

New Targets at the Wyloo Gold – Silver – Antimony Project for Maiden Drill Program

09.02.2026 | [GlobeNewswire](#)

HIGHLIGHTS

- Highly encouraging exploration results have been received from the Wyloo Project, confirming multiple high priority targets.
- A strong multielement soil anomaly has been defined over Wyloo SE, where a polymetallic vein system has previously been intersected.
- Follow-up exploration on the high-order Sb stream anomaly at Wyloo SW has defined a target area of 2.5 km x 800 m.
- Both Wyloo SE and SW prospects lie within the core of the Wyloo anticline, in the SE flank of the Wyloo Dome, within the Ashburton Basin.
- A heritage survey is scheduled for March to provide access for RC drilling planned to test the Wyloo SE area in Q2 2026.
- The maiden drill program at Wyloo SE, of approximately 1,500 m, is planned to test the high-grade polymetallic vein system.

Photo during reconnaissance at Wyloo SE, looking southwest from the mapped rhyolite dome.

PERTH, Australia, Feb. 09, 2026 -- [Novo Resources Corp.](#) (Novo or the Company) (ASX: NVO) (TSX: NVO) (OTCQB: NSRPF) is pleased to provide an update on the Wyloo Project, including recent exploration results and forward work program. This includes a heritage survey in March followed by a maiden RC program of some 1,500 m planned for Q2 2026 and designed to test the Wyloo SE polymetallic vein system.

Commenting on the Company's exploration results and planned RC drilling, Mike Spreadborough, Executive Co-Chairman and Acting Chief Executive Officer, said: *"The results from Wyloo SE continue to impress, with recent soil sampling defining a strong, open-ended multielement anomaly over a known polymetallic vein system. These results enhance our confidence in the scale and prospectivity of the target, and we are very excited about the conducting the maiden drill program into this compelling target."*

Additionally, follow-up stream sediment sampling at Wyloo SW has expanded and strengthened the original stream sediment anomaly and has elevated Wyloo SW to a drill-ready prospect. This reinforces the broader potential of the Wyloo Project, with multiple targets now emerging for systematic drill testing."

Figure 1: Novo Pilbara and Onslow District tenure showing significant prospects and location of the Wyloo Project in the southern Pilbara.

Regional Setting

The Wyloo project area covers two exploration tenements in the southern Pilbara (Figure 1). The Wyloo SE and SW prospects lie within the core of the Wyloo anticline, in the SE flank of the Wyloo Dome, which forms a basement high within the Ashburton Basin. It is a dynamic tectonic setting, with the regional Nanjilgardy Fault just 5 km south of the prospect. The Paulsons gold deposit lies in the NE part of the Wyloo Dome, approximately 40 km WNW of Wyloo SE.

Background ^{1, 2}

Two significant antimony anomalies were located by Novo in the SE part of Wyloo tenement E47/4213 during routine stream sediment sampling in 2023.

Reconnaissance exploration on the eastern-most anomaly identified a zone of quartz-sulphide veining with

anomalous antimony, silver, gold and base metals, at Wyloo SE (Figure 2). Seven rock chip samples yielded peak assay results of 387 g/t Ag, 0.38% Sb, 5.0% Pb, 1.6% Zn, 2.4% Cu and 0.52 g/t Au¹.

Follow-up work in mid-2025 included detailed structural and regolith mapping and rock chip sampling. The latter focussed on the ENE trending vein array dipping 60 degree to the ESE for over 130 m strike and trending under cover to the SW and NE. The main vein array outcrop is up to 7 metres thick, with footwall/hangingwall zones of intense sulphide, alteration and numerous anastomosing veins; and is up to 18 m wide where exposed at surface. Rock chip sampling further enhanced the target and yielded maximum values of 482 g/t Ag, 1.29% Sb, 9.7% Pb, 16% Zn and 0.93 ppm Au². Several samples assayed at greater than 7% Zn.

Figure 2: Previously released peak rock chip results at the Wyloo SE prospect and geology (outcrop mapping), highlighting significant Ag, Sb, Au, Cu, Zn and Pb results from the main vein array. Much of the target area only poorly outcrops (refer Figure 3 for geological setting).^{1,2}

Mapping at Wyloo SE has highlighted a dynamic geological setting (Figure 3):

- The vein array is located on the flank of an interpreted rhyolite dome;
- The vein array is parallel to a significant fault zone (the Tasha Fault) to the immediate southeast;
- Presence of several subvolcanic intrusions including quartz-eye porphyry with disseminated malachite ex-sulphide (note - outcrop too small to delineate at this scale) and rhyodacite-quartz porphyry;
- Jasperoidal lenses containing disseminated sulphides are either replacement or exhalitive.

Wyloo Project New Results

Recent work includes a soil grid over the Wyloo SE vein system and surrounds; and detailed infill stream sediment sampling, rock chip sampling and mapping at Wyloo SW.

This recent exploration has significantly enhanced the potential of the project, provided new targets and has allowed interpretation of several targets ready to drill in Q2 2026.

Wyloo SE

One hundred and sixty two (162) minus 80 mesh soil samples were taken at a 40 x 20 m spacing over the target area to test for mineralisation outside the obvious vein array outcrops. Sampling was restricted in places by significant colluvial cover to the west and southwest, and by alluvium along the Tasha Fault from the south to the northeast.

A strong multielement soil anomaly has been defined over 150 m strike tending parallel to stratigraphy and crosscutting the main vein array, suggesting a stratigraphic control to the anomaly and target. Peak soil values include 57.2 ppm Ag, 142 ppm Sb, 1,440 ppm As, 2,180 ppm Zn and 1,530 ppm Pb. Multielement anomalies are zoned, generally trend WNW parallel to the rhyolitic volcanic stratigraphy and are open under cover (Figure 3).

Refer to Appendix 1 for full results.

Figure 3, Wyloo SE highlighting geology, soil geochemistry (Sb ppm) and structural setting. Soil anomalies are open under colluvium to the west and alluvium along the Tasha Fault Zone to the east-northeast. The multielement anomalies trend NE to E-W, oblique to the main vein array. White dashed polygon shows field of view close-up from Figure 2.

Maiden drilling at Wyloo SE is planned to target:

1. The main ENE trending polymetallic vein array

1. The Tasha Fault zone, also trending ENE
2. The WNW trending stratigraphy, particularly at the intersection and in the vicinity of the sulphide bearing quartz-eye porphyry.

Wyloo SW

Fifty four (54) stream sediment samples were collected at the Wyloo SW prospect, targeting first to third-order creeks to define the source of the existing stream sediment anomaly in an area of significant transported sheetwash cover.

This follow-up exploration has defined a target area of 2.5 km x 800 m with peak stream sediment values of 19.9 ppm Sb and 57 ppm As and a multielement association of Sb-As-Cu-Pb-Zn (Figure 4). Refer to Appendix 2 for full results.

Targeted selective rock chip sampling was completed over areas of outcrop, with 53 rock chip samples collected across the prospect area, targeting outcrop zones of alteration and prospective quartz veining. Refer to Appendix 3 for full results.

Within the newly defined 2.5 km x 800 m target area, only 2 small zones of outcrop are exposed in and adjacent to a NW trending creek. One of the zones is characterised by strong shearing containing a mix of schistose lithologies, vein arrays and carbonate alteration. Results from rock chip sampling highlight elevated Sb, As, Zn and Cu in outcrop, with peak results of 570 ppm As, 526 ppm Cu, 431 ppm Zn and 26 ppm Sb. Whilst these results are low tenor, they clearly indicate that a mineralising system is present. Follow-up work is required to define the source of the stream sediment anomaly.

Figure 4 Wyloo tenure showing high order stream sediment antimony anomalies in the southern sector of the tenement, including recently received data for the Wyloo SW anomaly

Forward Program

A maiden drilling program at Wyloo SE is planned for Q2 2026 pending heritage surveys scheduled for early March. Drilling will target the ENE trending vein array, the Tasha Fault Zone and soil anomalies parallel to stratigraphy. Sectional drilling will test the vertical metal zonation of the polymetallic system, grade and width of the mineralisation and potential plunge of the target.

Further work at Wyloo SW will require broad sectional drilling using either AC or RC drilling to test beneath the 1 - 3 m thick sheetwash colluvial cover.

Authorised for release by the Board of Directors.

CONTACT

Investors:	North American Queries:	Media:
Mike Spreadborough	Leo Karabelas	Cameron Gilenko
+61 8 6400 6100	+1 416 543 3120	+61 466 984 953
info@novoresources.com	leo@novoresources.com	cameron.gilenko@sodali.com

QP STATEMENT

Mrs. Karen (Kas) De Luca (MAIG), is the qualified person, as defined under National Instrument 43-101 *Standards of Disclosure for Mineral Projects*, responsible for, and having reviewed and approved, the technical information contained in this news release. Mrs De Luca is Novo's General Manager Exploration.

JORC COMPLIANCE STATEMENT

New Exploration Results

The information in this news release that relates to exploration results at Novo's Pilbara tenure is based on information compiled by Mrs De Luca, who is a full-time employee of Novo Resources Corp. Mrs De Luca is a Competent Person who is a member of the Australian Institute of Geoscientists. Mrs De Luca has sufficient experience that is relevant to the style of mineralisation and the type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mrs De Luca consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

Previous Exploration Results

The information in this news release that relates to previously reported exploration results at Novo's Pilbara tenure is extracted from the Company's ASX announcements referred to in endnotes 1 and 2, each of which is available to view at www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the competent persons findings are presented have not been materially modified from the original market announcements.

FORWARD-LOOKING STATEMENTS

Some statements in this news release may contain "forward-looking statements" within the meaning of Canadian and Australian securities law and regulations. In this news release, such statements include but are not limited to planned exploration activities and the timing of such. These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the statements. Such factors include, without limitation, customary risks of the resource industry and the risk factors identified in Novo's annual information form for the year ended December 31, 2024 (which is available under Novo's profile on SEDAR+ at www.sedarplus.ca and at www.asx.com.au) in the Company's prospectus dated 2 August 2023 which is available at www.asx.com.au. Forward-looking statements speak only as of the date those statements are made. Except as required by applicable law, Novo assumes no obligation to update or to publicly announce the results of any change to any forward-looking statement contained or incorporated by reference herein to reflect actual results, future events or developments, changes in assumptions or changes in other factors affecting the forward-looking statements. If Novo updates any forward-looking statement(s), no inference should be drawn that the Company will make additional updates with respect to those or other forward-looking statements.

ABOUT NOVO

Novo is an Australian based gold explorer listed on the ASX and the TSX focussed on discovering standalone gold and copper projects with > 1 Moz development potential. Novo is an innovative explorer with a significant land package covering approximately 4,160 square kilometres in the Pilbara region of Western Australia, along with the 22 square kilometre Belltopper project in the Bendigo Tectonic Zone of Victoria. In addition to the above, Novo is part of two prospective farm in agreements in New South Wales.

Novo's key project area in the Pilbara is the Egina Gold Camp, where [Northern Star Resources Ltd.](#) is farming-in to form a JV at the Becher Project and surrounding tenements through exploration expenditure of A\$25 million for a 50% interest. The Becher Project has similar geological characteristics to Northern Star's 13.6 Moz Hemi Project#. Novo is also advancing gold exploration south of Becher at the Teichman Project in the Egina Gold Camp, part of the Croydon JV (Novo 70%; Creasy Group 30%). Novo continues to undertake early-stage exploration elsewhere across its Pilbara tenement portfolio.

Novo has also formed a lithium joint venture with SQM in the Pilbara which provides shareholder exposure to battery metals.

Novo has strengthened its high-quality, Australian based exploration portfolio by adding the TechGen John Bull Gold Project in the New England Orogen of NSW, and Manhattan Corp. Limited Tibooburra Gold Project in the Albert Goldfields in northwestern NSW. Both projects demonstrate prospectivity for significant discovery and resource definition and align with Novo's strategy of identifying and exploring projects with > 1 Moz Au potential. These high-grade gold projects compliment the landholding consolidation that forms the Toolunga Project in the Onslow District in Western Australia.

Novo has a significant investment portfolio and a disciplined program in place to identify value accretive opportunities that will build further value for shareholders.

Please refer to Novo's website for further information including the latest corporate presentation.

#Refer to De Grey's ASX Announcement, Hemi Gold Project mineral Resource Estimate (MRE) 2024, dated 14 November 2024. No assurance can be given that a similar (or any) commercially viable mineral deposit will be determined at Novo's Becher Project.

Appendix 1: Wyloo SE new -80# soil sample results for Au, Ag, As, Cu, Pb, Sb, and Zn, relevant to the mineralisation style and reported in this release. All co-ordinates are in GDA2020 zone 50.

Sample ID	Easting (m)	Northing (m)	Height (m)	Au (ppb)	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)
J1502b	457948	7482762	296	7	0.0	37	50	11	5.1	130
J1503b	457960	7482747	298	2	0.1	37	56	13	6.5	62
J1501b	457934	7482778	295	2	0.3	25	45	12	4.4	103
J1504b	457974	7482732	303	4	0.2	57	55	16	6.6	71
J1506b	457999	7482701	302	2	1.2	174	272	63	41.5	112
J1505b	457987	7482716	307	1	0.1	67	65	20	10.3	119
J1509b	458043	7482712	296	1	0.1	47	44	31	5.3	79
J1511b	458016	7482743	297	3	0.1	42	38	11	3.4	106
J1512b	458005	7482756	296	0	0.1	31	51	11	2.8	115
J1513b	457991	7482773	292	1	0.1	28	53	10	2.5	131
J1521b	457913	7482865	292	2	0.2	72	107	11	7.3	40
J1507b	458012	7482686	297	1	1.1	205	120	106	34.0	110
J1508b	458026	7482672	295	2	0.2	47	66	14	11.7	104
J1510b	458030	7482727	295	1	0.1	27	34	14	3.9	60
J1524b	457944	7482890	295	3	0.1	60	56	13	18.4	53
J1525b	457957	7482875	296	2	0.2	60	80	12	16.8	50
J1526b	457970	7482860	301	2	1.3	18	76	11	8.9	61
J1514b	457978	7482788	291	1	0.0	18	36	9	2.8	118
J1516b	457966	7482803	293	1	0.1	17	43	9	2.7	139
J1517b	457953	7482819	293	2	0.3	49	51	9	3.2	128
J1527b	457983	7482845	302	1	0.3	18	61	11	5.7	49
J1528b	457995	7482829	301	0	0.2	18	38	10	3.1	59
J1530b	458022	7482799	301	0	0.0	35	85	8	4.2	28
J1518b	457938	7482834	291	2	0.1	31	79	13	4.8	101
J1519b	457927	7482849	292	1	0.1	88	68	11	8.0	56
J1522b	457900	7482880	294	0	0.1	36	44	11	7.7	46
J1531b	458036	7482783	301	5	0.3	34	161	9	3.1	126
J1534b	458074	7482737	300	3	0.2	41	54	22	4.7	46
J1536b	458087	7482722	300	0	0.0	63	71	30	10.8	48
J1523b	457930	7482906	297	0	0.0	28	30	12	11.5	48
J1529b	458009	7482813	300	1	0.1	29	71	9	3.8	50
J1532b	458047	7482768	301	2	0.0	33	35	12	3.1	81

J1537b	458098	7482707	299	4	0.0	74	108	46	12.4	63
J1538b	458113	7482692	300	4	0.1	60	78	19	7.1	104
J1541b	458207	7482641	303	1	0.1	28	53	8	5.2	85
J1533b	458061	7482752	301	2	0.2	39	37	17	3.8	51
J1539b	458123	7482676	302	1	0.0	59	73	18	8.3	109
J1540b	458138	7482660	300	1	0.2	43	71	9	9.6	123
J1542b	458195	7482656	303	0	0.1	25	47	8	5.1	77
J1543b	458180	7482672	302	2	0.1	32	49	8	4.6	102
J1552b	458077	7482794	306	1	0.0	32	46	11	3.1	58
J1544b	458169	7482687	302	2	0.1	49	127	10	3.6	121
J1546b	458156	7482702	303	3	0.3	43	102	27	6.8	99
J1547b	458142	7482717	302	7	0.2	79	82	17	7.0	94
J1553b	458065	7482809	306	1	0.1	31	56	10	2.7	47
J1555b	458108	7482820	313	2	0.0	71	56	8	3.9	19
J1557b	458134	7482789	303	1	0.0	38	47	14	4.4	32
J1548b	458130	7482733	304	7	0.2	66	68	40	9.3	80
J1549b	458117	7482748	303	1	0.0	77	81	44	13.5	53
J1550b	458103	7482763	304	4	0.1	49	93	33	6.1	42
J1559b	458161	7482758	303	12	0.2	77	60	43	10.3	70
J1560b	458173	7482743	302	6	0.1	67	74	20	9.0	79
J1561b	458185	7482727	302	27	0.1	51	137	25	7.0	83
J1551b	458091	7482778	304	2	0.1	38	47	14	3.5	36
J1554b	458095	7482834	316	0	0.1	22	37	8	2.9	23
J1556b	458121	7482805	308	1	0.1	37	42	10	2.9	29
J1564b	458226	7482682	310	2	0.0	12	42	7	2.4	55
J1566b	458238	7482667	305	0	0.0	13	42	7	3.1	54
J1567b	458251	7482651	299	10	0.0	22	47	8	3.6	64
J1558b	458147	7482774	302	9	0.1	49	64	48	10.2	52
J1562b	458200	7482713	303	1	0.1	43	152	6	2.6	118
J1563b	458211	7482697	306	0	0.1	29	49	7	3.3	105
J1569b	458319	7482632	300	1	0.1	67	45	10	12.7	63
J1571b	458294	7482661	296	1	0.1	41	55	9	6.7	69
J1573b	458267	7482692	301	1	0.0	21	38	7	3.6	52
J1568b	458307	7482646	301	9	0.1	42	42	10	7.8	61
J1572b	458282	7482677	298	1	0.0	26	55	9	3.7	84
J1575b	458241	7482723	307	0	0.1	32	52	8	5.9	86
J1574b	458256	7482708	304	1	0.1	25	40	7	5.4	55
J1576b	458229	7482738	303	0	0.1	32	54	9	3.4	97
J1578b	458204	7482768	304	8	0.3	95	102	29	9.0	82
J1577b	458217	7482754	304	5	0.3	91	95	30	12.8	86
J1579b	458191	7482784	305	11	0.2	72	83	30	10.1	62
J1581b	458165	7482815	297	1	0.1	28	46	19	3.9	39
J1580b	458179	7482800	291	12	0.2	68	80	45	12.0	56
J1584b	458126	7482861	314	2	0.1	46	50	13	5.0	43
J1586b	458114	7482876	314	1	0.1	30	48	10	3.7	36
J1582b	458152	7482829	300	2	0.1	39	56	17	3.3	35
J1583b	458139	7482845	305	0	0.0	31	35	11	2.9	27
J1590b	458158	7482887	304	5	0.1	24	47	14	3.7	38
J1587b	458083	7482850	323	1	0.0	36	30	10	2.9	32
J1588b	458053	7482824	309	1	0.1	29	68	10	2.6	36
J1589b	458145	7482902	304	1	0.0	24	45	12	3.7	68
J1591b	458170	7482871	302	2	0.1	24	43	22	3.2	40

J1594b	458208	7482825	302	5	0.1	67	65	35	11.8	44
J1596b	458221	7482810	302	2	0.1	46	77	30	7.3	58
J1592b	458182	7482856	301	7	0.2	23	54	71	4.1	42
J1593b	458196	7482841	301	1	0.1	53	88	50	9.5	43
J1599b	458260	7482765	303	7	0.2	75	90	28	10.5	68
J1597b	458235	7482795	303	5	0.2	51	90	38	9.6	73
J1598b	458247	7482779	307	6	0.3	66	96	28	7.7	68
J5309	457882	7482654	295	0	1.4	612	35	80	75.5	134
J1600b	458272	7482749	304	1	0.1	78	103	22	7.3	84
J5308	457894	7482639	296	1	1.0	939	30	57	47.9	106
J5314	457816	7482731	292	2	0.2	219	88	16	20.7	62
J5310	457869	7482668	295	2	6.2	475	51	102	110.0	195
J5311	457856	7482685	295	0	0.4	501	110	40	81.8	187
J5312	457841	7482700	295	0	0.0	461	64	18	47.7	70
J5313	457830	7482715	294	0	0.0	260	57	21	30.1	59
J5316	457804	7482745	291	2	0.2	315	50	16	17.9	57
J5317	457793	7482761	289	3	0.0	177	64	15	15.0	65
J5319	457810	7482802	290	1	0.0	263	66	17	17.8	62
J5322	457835	7482772	296	0	0.1	215	57	15	14.5	55
J5328	457912	7482679	300	1	0.8	224	116	59	89.8	222
J5318	457780	7482776	289	105	0.1	110	39	13	11.6	52
J5321	457825	7482787	293	1	0.0	317	61	15	14.1	55
J5323	457847	7482757	293	1	0.0	299	36	12	17.6	43
J5329	457924	7482663	302	1	57.2	1440	82	1530	142.0	255
J5334	457956	7482690	304	0	0.2	376	474	16	111.5	162
J5339	457904	7482752	292	16	0.1	97	100	12	18.6	72
J5341	457878	7482782	294	7	0.5	291	64	11	12.6	63
J5344	457840	7482828	292	1	0.1	196	95	14	7.9	56
J5346	457869	7482854	291	1	0.1	77	68	12	5.3	84
J5347	457882	7482839	292	0	0.0	103	34	9	5.9	75
J5359	458201	7482897	303	2	0.1	36	54	24	5.4	41
J5360	458188	7482912	305	4	0.2	30	73	24	4.4	51
J5361	458176	7482927	303	1	0.0	24	39	16	3.2	39
J5363	458217	7482938	304	1	0.1	40	65	26	6.6	39
J5364	458231	7482923	308	1	0.0	41	81	27	7.2	33
J5366	458244	7482907	306	2	0.2	44	56	23	7.6	36
J5367	458257	7482892	303	4	0.2	59	67	29	9.2	42
J5371	458295	7482847	310	7	0.3	93	138	54	10.8	63
J5324	457861	7482741	295	1	0.1	391	70	16	22.4	67
J5325	457872	7482726	296	0	0.0	254	113	15	30.2	71
J5326	457888	7482711	296	1	0.2	446	125	24	41.2	93
J5373	458321	7482816	307	5	0.2	56	62	23	12.4	52
J5374	458353	7482841	312	1	0.2	32	58	20	8.4	52
J5375	458341	7482856	316	1	0.1	34	47	19	4.9	52
J5376	458326	7482872	309	9	0.2	38	81	27	7.1	55
J5377	458313	7482887	305	0	0.1	45	68	25	7.9	49
J5380	458275	7482933	305	1	0.0	51	61	21	8.8	36
J5327	457899	7482695	299	1	0.1	197	153	27	44.0	103
J5330	457939	7482650	304	0	1.8	422	50	148	79.0	2180
J5331	457909	7482624	297	1	1.8	465	61	26	24.7	634
J5332	457981	7482660	297	4	5.2	401	123	197	101.0	1290
J5333	457969	7482675	301	2	1.0	349	125	204	120.5	305

J5336	457944	7482706	302	2	0.2	268	167	20	34.5	82
J5381	458262	7482949	302	1	0.0	37	84	16	5.7	37
J5382	458248	7482963	305	3	0.1	37	62	23	5.3	38
J5383	458234	7482978	300	3	0.1	42	87	38	6.3	36
J5337	457929	7482721	300	0	0.0	95	95	12	22.8	91
J5338	457918	7482737	297	1	0.1	56	93	16	20.5	65
J5340	457891	7482766	290	10	0.2	337	83	11	20.4	67
J5342	457867	7482797	293	0	0.1	1030	55	15	17.6	68
J5343	457852	7482813	291	0	0.0	296	57	10	14.0	75
J5348	457897	7482824	291	0	0.0	140	38	10	4.8	107
J5349	457909	7482809	293	1	0.1	42	47	12	4.1	102
J5350	457923	7482792	295	2	0.1	38	59	11	4.5	139
J5351	458303	7482776	305	1	0.2	70	106	15	5.1	135
J5352	458290	7482790	309	19	0.2	73	82	17	7.8	94
J5353	458278	7482805	312	7	0.1	123	90	22	7.6	74
J5354	458266	7482820	308	3	0.2	62	83	30	8.9	50
J5355	458251	7482836	307	2	0.1	59	66	31	10.2	50
J5356	458239	7482851	304	3	0.2	75	65	34	10.3	53
J5357	458226	7482866	304	5	0.2	71	241	93	11.9	46
J5358	458214	7482882	302	0	0.1	49	73	28	8.3	39
J5362	458206	7482953	303	2	0.0	38	62	20	5.9	36
J5368	458270	7482877	306	2	0.1	71	63	28	9.3	50
J5369	458282	7482862	306	4	0.1	79	63	31	9.7	49
J5372	458308	7482832	312	11	0.3	72	107	27	12.2	36
J5378	458300	7482899	302	5	0.2	44	77	25	6.7	48
J5379	458288	7482918	302	12	0.5	48	104	26	5.5	26

Appendix 2: Wyloo new stream sediment sample results for Au, Ag, As, Cu, Pb Sb, and Zn, relevant to the mineralisation style and reported in this release. All co-ordinates are in GDA2020 zone 50.

Sample ID	Easting (m)	Northing (m)	Height (m)	Au (ppm)	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)
BL0001	450821	7483293	248	0	0	27	49	19	6.6	101
BL0002	450821	7483377	248	0.01	0	18	59	12	3.8	109
BL0003	451043	7483614	246	0	0	50	69	24	11.7	144
BL0004	451215	7483634	245	0	0	28	50	19	6.7	104
BL0005	451120	7483396	246	0	0	24	57	15	6.3	126
BL0006	451184	7483269	243	0.06	0.04	40	58	24	11.8	130
BL0007	451143	7483266	245	0.03	0	29	48	20	8.4	110
BL0008	451104	7483258	245	0	0	32	48	21	9.0	111
BL0009	451022	7483298	243	0	0.07	31	53	21	9.8	125
BL0010	450968	7483287	242	0.03	0.17	20	43	15	4.6	85
BL0011	452290	7483617	250	0	0	12	40	12	3.1	75
BL0012	452286	7483675	248	0	0.03	47	72	26	10.0	147
BL0013	452160	7483672	249	0	0	49	77	28	11.5	164
BL0014	452118	7483481	249	0	0.06	22	58	11	5.8	127
BL0016	452232	7483359	253	0.01	0	20	62	11	4.5	128
BL0017	452238	7483396	256	0.06	0	33	67	16	8.9	156
BL0018	452909	7483774	253	0	0.08	6	48	13	1.4	78
BL0019	452800	7483777	251	0	0	13	57	20	1.4	70
BL0021	452652	7483748	253	0	0.19	25	84	36	4.4	100
BL0022	452559	7483635	250	0	0.09	36	54	21	9.5	123

BL0023 453607 7483449 259	0	0	6	38	11	1.0	64
BL0024 453291 7482979 262	0	0	23	63	11	6.7	144
BL0025 453219 7483084 261	0	0	55	93	23	14.1	189
BL0026 451448 7483244 252	0.06	0.15	22	47	15	5.7	90
BL0027 451567 7483301 251	0	0.14	48	67	26	15.1	155
BL0028 451700 7483274 251	0.01	0.04	46	69	24	15.0	164
BL0029 451991 7483151 252	0.04	0	57	80	26	19.9	199
BL0030 451991 7483107 253	0	0	26	50	17	7.6	113
BL0031 452068 7483115 252	0.06	0.06	54	77	27	19.2	186
BL0032 452261 7483041 253	0	0	24	57	16	6.7	132
BL0033 452226 7483006 254	0	0.04	20	51	13	5.8	113
BL0034 452041 7483241 252	0	0	24	62	13	5.9	137
BL0036 451961 7483265 254	0	0.15	39	75	19	11.4	171
BL0037 451648 7483562 249	0.04	0	30	69	14	9.1	152
BL0038 451524 7483420 254	0.05	0	35	66	18	11.5	159
BL0039 453000 7483050 255	0	0.03	32	80	16	9.0	170
BL0040 452952 7483022 252	0.03	0.06	46	78	24	15.2	175
BL0041 451618 7484016 247	0	0	11	41	17	1.5	69
BL0042 451593 7484011 246	0.03	0.09	13	39	21	2.2	65
BL0043 451479 7483864 244	0.01	0.09	24	48	23	5.9	105
BL0044 451528 7483862 242	0	0	19	52	20	3.6	85
BL0046 451819 7483754 248	0.04	0.04	23	54	17	4.5	90
BL0047 451838 7483813 248	0.05	0	26	57	21	5.9	103
BL0048 451866 7483805 245	0	0	31	62	23	6.2	109
BL0049 452347 7483716 253	0	0.16	41	68	24	10.2	125
BL0050 452424 7483720 252	0.02	0	27	61	18	4.2	88
BL0051 453265 7484081 259	0.05	0.11	6	48	12	0.9	89
BL0052 453186 7483911 256	0	0.04	6	52	15	1.6	80
BL0053 453128 7483848 258	0	0	6	41	12	1.3	65
BL0054 453255 7483626 257	0.08	0.11	19	50	23	5.1	96

Appendix 3: Wyloo rock sample results for Au, Ag, As, Cu, Pb Sb, and Zn, relevant to the mineralisation style and reported in this release. All co-ordinates are in GDA2020 zone 50.

Sample ID	Easting (m)	Northing (m)	Height (m)	Au (ppm)	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Sb (ppm)	Zn (ppm)
R07742 451229	7483662	243	0.001	0	0	15	0	0	0	15
R07743 451336	7483643	243	0.004	0	43	78	10	0	0	63
R07744 451613	7483613	247	0.001	0	11	11	2	0	0	10
R07745 452649	7483245	254	0.058	0.5	92	383	47	0	0	19
R07746 452645	7483894	241	0.003	0.7	105	64	3	0	0	165
R07747 452577	7483766	241	0.012	0	13	15	5	0	0	13
R07748 452531	7484213	244	0.002	0	19	25	7	0	0	76
R07749 452409	7484339	242	0.004	0	80	77	7	6	0	142
R07750 452377	7484430	241	0.002	0	11	45	43	0	0	154
R07751 452568	7484709	238	0.002	0	9	28	21	0	0	9
R07752 452366	7484700	240	0.002	0	16	42	9	0	0	13
R07753 452292	7484684	246	0.003	0	7	9	3	0	0	62
R07754 453019	7484238	239	0.001	0	70	18	6	0	0	63
R07756 453030	7484233	242	0.002	0	45	25	5	0	0	60
R07757 453024	7484237	250	0.001	0	0	2	0	0	0	3
R07842 452381	7483373	255	0.004	0	17	27	27	12	0	90

R07843 452715 7483228 259	0.001	0	425	23	3	10	108
R07844 453251 7483102 262	0.004	0	464	232	42	26	431
R07846 452745 7483196 255	0.006	0	29	66	3	0	46
R07847 452776 7483146 254	0.001	0	40	110	73	8	37
R07848 452771 7483140 256	0.003	0.8	570	149	5	5	31
R07849 452785 7483124 254	0.002	0	41	70	4	0	22
R07850 452812 7483117 257	0.001	0	42	61	149	0	55
R07851 452802 7483148 256	0	0	195	26	19	0	17
R07852 452749 7483193 258	0.003	0	130	138	4	0	45
R07853 453721 7482414 272	0.009	0	231	6	5	12	16
R07854 453812 7482548 273	0.033	0	87	27	27	0	34
R07855 452792 7483160 259	0.009	0	112	114	3	0	56
R07856 452791 7483162 261	0	0	90	12	3	0	33
R07857 452372 7483397 270	0.007	0	41	303	57	24	17
R07859 452469 7483278 257	0	0	8	32	2	0	11
R08646 452093 7483569 253	0.013	0.8	40	102	41	14	119
R08647 452354 7483417 254	0.001	0	68	74	12	21	64
R08648 452348 7483422 256	0	0	20	12	93	6	28
R08649 452378 7483396 256	0.007	0	66	526	32	24	57
R09051 453038 7484092 246	0.001	0	8	10	9	0	22
R09053 453417 7483771 245	0.001	0	0	21	34	0	325
R09054 453491 7483933 247	0	0	5	22	2	5	4
R09055 453020 7483892 244	0	0	36	19	3	0	25
R09056 453027 7483903 245	0.009	0	14	82	18	0	50
R09057 452979 7483960 244	0	0	6	41	5	0	21
R09058 452913 7483852 244	0	0	16	9	4	11	7
R09059 453002 7483916 245	0	0	0	46	3	0	19
R09060 453015 7483914 245	0	0	15	30	3	0	16
R09062 453006 7483921 244	0.023	0	34	886	11	0	60
R09063 453516 7484110 253	0	0	0	10	0	0	5
R09064 453457 7484191 251	0	0	0	4	3	0	4
R09065 453149 7484276 250	0.001	0	0	12	3	0	5
R09066 453165 7484315 252	0.001	0	13	116	46	0	98
R09067 453063 7484333 254	0.04	2.7	0	85	4260	6	9
R09068 453091 7484197 253	0	0	0	7	16	0	53
R09069 453135 7484141 250	0	0	10	21	4	0	40
R09070 453153 7484128 251	0.001	0	22	72	133	0	52

JORC Code, 2012 Edition - Table 1

Section 1: Sampling Techniques and Data

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation
----------	-----------------------

Sampling techniques

- Nature and quality of sampling (e.g., cut channels, random cut channels, systematic cut channels, etc.)
- Include reference to measures taken to ensure sample representivity and minimize sampling bias
- Aspects of the determination of mineralisation that are Material
- In cases where 'industry standard' work has been done this

Drilling techniques

- Drill type (e.g., core, reverse circulation, open-hole hammer, etc.)

Drill sample recovery

- Method of recording and assessing core and chip sample recovery
- Measures taken to maximise sample recovery and ensure representative samples
- Whether a relationship exists between sample recovery and sample quality

Logging

- Whether core and chip samples have been geologically and geographically logged
- Whether logging is qualitative or quantitative in nature. Core description, chip samples, thin sections, etc.
- The total length and percentage of the relevant intersections logged

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all sections taken
- If non-core, whether riffled, tube sampled, rotary split, etc and whether oriented or not
- For all sample types, the nature, quality, and appropriateness of the sample preparation technique
- Quality control procedures adopted for all sub-sampling stages
- Measures taken to ensure that the sampling is representative
- Whether sample sizes are appropriate to the grain size of the material

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used
- For geophysical tools, spectrometers, handheld XRF instruments, etc
- Nature of quality control procedures adopted (e.g., standard reference materials, duplicate analysis, etc.)

Verification of sampling and assaying

- The verification of significant intersections by either independent check sampling or other suitable technique
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, quality control data and statistics used to evaluate data and samples
- Discuss any adjustment to assay data.

Location of data points

- Accuracy and quality of surveys used to locate drill holes (collar locations, hole locations and orientations)
- Specification of the grid system used.
- Quality and adequacy of topographic control.

Data spacing and distribution

- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the sampling bias and whether composite samples have been used.
- Whether sample compositing has been applied.

Orientation of data in relation to geological structure

- Whether the orientation of sampling achieves unbiased sampling of geological structures and the orientation of data in relation to geological structures.
- If the relationship between the drilling orientation and the orientation of geological structures is not apparent, the reasons for this should be explained.

Sample security

- The measures taken to ensure sample security.

Audits or reviews

- The results of any audits or reviews of sampling techniques and data interpretation.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria

JORC Code explanation

Mineral tenement and land tenure status

- Type, reference name/number, location and ownership
- The security of the tenure held at the time of reporting

Exploration done by other parties

- Acknowledgment and appraisal of exploration by others

Geology

- Deposit type, geological setting, and style of mineralisation

Drill hole Information

- A summary of all information material to the understanding of the drill hole data
- If the exclusion of this information is justified or explained

Data aggregation methods

- In reporting Exploration Results, weighting average
- Where aggregate intercepts incorporate short lengths of high-grade intercepts
- The assumptions used for any reporting of meta-data

Relationship between mineralisation widths and intercept lengths

- These relationships are particularly important in reporting Exploration Results
- If the geometry of the mineralisation with respect to the drill hole is unknown
- If it is not known and only the down hole length is reported

Diagrams

- Appropriate maps and sections (with scales) are provided

Balanced reporting

- Where comprehensive reporting of all Exploration Results is not practicable

Other substantive exploration data

- Other exploration data, if meaningful and material

Further work

- The nature and scale of planned further work (if any)
- Diagrams clearly highlighting the areas of possible mineralisation

No Section 3 or 4 report as no Mineral Resources or Ore Reserves are reported in this Appendix

¹ Refer to Novo's ASX announcement dated 12 September 2024 - Evaluation of Pilbara Antimony-Gold Potential Generates Positive Results

² Refer to Novo's ASX announcement dated 04 September 2025 - Drilling Commences at Sherlock Crossing Gold-Antimony Prospect

Photos accompanying this announcement are available at:

<https://www.globenewswire.com/NewsRoom/AttachmentNg/53bbb178-0e06-439e-8bbf-4b45af3ba609>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/37d23dfd-78d1-45a8-b2fc-9bc899480d83>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/8320a9d8-da3b-4afc-bd4a-6b805d6ef070>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/a5ea29bc-279b-4179-bfa4-c40bca6385a1>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/3417ff4d-270e-42f1-8f7b-8f368bebcc0a>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/02145be9-eff1-49ee-a05c-d2f40e34f363>

Dieser Artikel stammt von [Rohstoff-Welt.de](https://www.rohstoff-welt.de)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/721788--New-Targets-at-the-Wyloo-Gold--Silver--Antimony-Project-for-Maiden-Drill-Program.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinen](#).