

High-Grade Sediment Hosted Mineralization Extended at Pampa Medina – 300m Western Step-out SMRD-16 Intersects 10m of 4.2% Cu within 70m of 1.0% Cu

15.08.2025 | [GlobeNewswire](#)

VANCOUVER, Aug. 15, 2025 - [Marimaca Copper Corp.](#) ("Marimaca Copper" or the "Company") (TSX:MARI, ASX:MC2) is pleased to announce further drilling at the Pampa Medina deposit, extending the high-grade sediment-hosted manto-system 300m to the west from previous drilling. Pampa Medina is located at low altitude approximately 28km east of the Company's Marimaca Oxide Deposit ("MOD") in a flat "pampa" valley within the Atacama Desert (Figure 1). The Company is executing a 10,000m extensional drilling program with three rigs currently on site.

Highlights

- Hole SMRD-16 extends the high-grade manto-system a further 300m to the west, with varying depths of the oxide to sulphide transition (Figure 1 and 4)
 - Further validation of the Pampa Medina exploration model: a unique stratiform, sediment hosted, copper system with extensive high-grade sequences
- Interbedded sandstone, shale and conglomerate units continue to deliver the highest-grade zones (>1% Cu) across broad thicknesses
- The favourable mineralized stratigraphic sequence is now defined by drilling across a 1.2km x 1.2km area at the Pampa Medina deposit and remains open - extensional drilling will focus on the north and the west
- Highlights from SMRD-16 (true widths estimated to be 95% of reported intersection):
 - 70m of 1.0% from 434m including:
 - 10m of 4.2% Cu from 438m downhole within 30m of 2.1% Cu from 434m (Figure 3)
 - Oxide and secondary sulphide
 - 116m of 0.61% Cu from 516m including:
 - 8m of 1.8% Cu from 528m (sulphide)
 - 10m of 1.2% Cu from 568m (sulphide)
 - 20m of 1.1% Cu from 612m (sulphide)
 - 50m of 0.53% Cu from 744m including:
 - 10m of 1.1% Cu from 782m (sulphide)
- Hole SMRD-15 demonstrates uplifting of the eastern extension, with a broad zone of near-surface oxide mineralization intersected at 122m down hole in hosted by remnants of sediments just above the contact with basement rocks
 - SMRD-15 intersected 42m of 0.51% Cu from 158m (oxides)
- SMRD-16 extends the high-grade mineralized manto 300m west along section from previously reported holes (see Figure 4):
- Hole SMRD-13 (300m west of SMRD-15)
 - 6m of 12.0% Cu from 594m downhole within 26m of 4.1% Cu from 580m and a broader 100m of 1.3% Cu from 580m
- Hole SMD-02 (600m east of SMRD-16 on section) (previously reported)
 - 40m of 2.1% Cu from 282m downhole within 132m of 1.0% Cu from 278m
- Hole SMRD-12 (300m east of SMRD-16 on section) (previously reported)
 - 56m of 1.4% Cu from 566m downhole

- Similar to the MOD, Pampa Medina's location is expected to drive significant infrastructure and permitting benefits:
 - Proximity to other mines and associated infrastructure (Figure 1): 28km from the MOD, 64km from Sierra Gorda (South32/KGHM), 40km from Mantos Blancos (Capstone Copper), 77km from Spence (BHP), 54km from Antucoya (Antofagasta Minerals)
 - Low altitude, flat "pampa" type surface provides sufficient space for future facilities and infrastructure
 - Proximity to existing powerlines, water pipelines, major ports and regional populations
 - No private land ownership, limited human impact (no nearby local or indigenous population), extremely arid location indicates low permitting risks (comparable or superior to the MOD) associated with potential development

Sergio Rivera, VP Exploration of Marimaca Copper, commented:

"SMRD-16 is a further 300m step out to the west of the previously announced SMRD-12 and has intersected a similar broad zone of high-grade copper mineralization, including 70m at 1.0% and a number of discrete very high-grade zones.

"The area of interest currently confirmed by drill intersections extends over 1.2km east-west by 1.2km north-south, with an average true thickness of between 50m to 100m. We currently have no observable reasons to indicate that mineralization would not be continuous while the sedimentary unit exists and, as a result, we see enormous potential to both the north and west of the current drilling.

"To the east, the block was uplifted significantly, which caused a thinning of the mineralization. Despite this, we intersected a broad zone of oxide copper mineralization at above economic cut-off grades for Pampa Medina and we, therefore, continue to see strong potential for oxide resource growth in all directions.

"Our strategy remains to step out significantly to try to define the limits of what is a very large system, but we will now also turn our attention to planning an infill campaign in the broader Pampa Medina project area with the objective of delineating updated resources for the project."

Hayden Locke, President and CEO of Marimaca Copper, commented:

"The depth of these new intersections continue to indicate that it will be an underground opportunity, once the Pampa Medina oxide open pit has been considered. Our early analysis indicates an economic cut-off grade requirement of between 0.5% and 0.8%, depending on copper price. With that in mind, we are targeting mineralized intersections with true widths exceeding 20m at an average copper grade of 1.0% or more. The last four drill holes have delivered widths and grades that materially surpass this requirement and, as a result, we see enormous potential for a large scale, highly economic, underground copper mining opportunity.

"Sergio Rivera and our exploration team continue to deliver outstanding value with the extension of the thick, high grade manto mineralization to the west. The continued exploration success at Pampa Medina reinforces our goal at Marimaca: to become a significant copper producer with the unique, low-cost, advanced-stage asset in the MOD, and transformational district scale upside anchored by Pampa Medina and Madrugador.

"With the upcoming release of the MOD DFS, our strategy remains multi-pronged: 1) deliver a near-term, low-cost 50ktpa copper cathode mine in a Tier-1 jurisdiction; 2) advance the Pampa Medina and Madrugador Oxide projects to grow our cathode production and extend mine life; and 3) continue to define the district-scale exploration potential of our large land package."

Overview of Pampa Medina

Pampa Medina is a stratiform or manto-style copper deposit dominantly hosted in Jurassic-Triassic sedimentary units (sandstones, conglomerates, tuffs and black shales) overlain by andesitic volcanics and underlain by an Upper Paleozoic complex of metamorphosed sediments, volcanics and intrusions. It's intruded by a dyke swarm and affected by post mineral normal faulting (Figure 4). Copper was originally

identified in near-surface oxide mineralization dominated by atacamite, chrysocolla and both secondary and primary chalcocite, and has now been identified in high-grade zones of chalcopyrite and bornite which extend laterally down-dip beyond the oxide-primary transition.

Following Marimaca's consolidation of the project area and surrounding land packages in 2024, the Company reinterpreted all available geological information (for the first time as one) and developed an updated geological model for Pampa Medina, which identified the lower sedimentary units of interbedded sandstones, shales and conglomerates as the productive horizons for future drill targeting. Oxide copper mineralization was logged in historical drilling in near-surface, uplifted blocks, with the model of continuity in the intact lithological sequence in deeper blocks for primary mineralization to be tested by Marimaca's 2025 drilling campaign.

SMRD-16 materially extends the high-grade manto to the west, increasing the defined mineralized stratigraphy across a 1.2km by 1.2km area (Figures 2 and 4). Weakly mineralized sandstones were intercepted from 116m, with the main high-grade mixed-sulphide, sediment hosted mineralization starting at 438m downhole. Hole SMRD-15 was planned to confirm the uplifted basement in the eastern direction of the Pampa Medina main target. Oxide mineralization was intercepted at 122m, extending to 204m depth (Figure 3). Exploration focus will remain on the western and northern regions of the Pampa Medina main target, which both remain open.

Figure 1: Regional Map - Marimaca, Pampa Medina and Regional Infrastructure

Figure 2 - Pampa Medina Deposit and Step-out Drilling Locations

Figure 3 - Pampa Medina Lithology - SMRD-16 Downhole Sequence

Figure 4 - Cross Section Looking North - Pampa Medina SMRD-15 to SMRD-16

Hole	Total Depth (m)	From (m)	To (m)	Intersection (m)	% CuT
SMRD-15 580		122	200	78	0.31
	Including 158		200	42	0.51
	Including 188		198	10	0.83

	236	266	30	0.43
SMRD-16 850	And 434	794	360	0.49
	Including 434	504	70	1.03
	Including 434	464	30	2.10
	Including 438	448	10	4.24
	Including 516	632	116	0.61
	Including 516	536	20	0.91
	Including 528	536	8	1.80
	Including 568	590	22	0.90
	Including 568	578	10	1.24
	Including 612	632	20	1.14
	Including 744	794	50	0.53
	Including 782	792	10	1.10

Table 1: Table of Intersections

Hole	Easting	Northing	Elevation	Azimuth	Inclination	Depth
SMRD-15	7440799.14	407698.23	1267.17	270	-60	580
SMRD-16	7440819.3	406488.16	1282.01	270	-60	850

Table 2: Drill Collars

Sampling and Assay Protocols

True widths are estimated as 95% of reported intervals, based on down-hole bedding and structural measurements. DDH holes were sampled on a 2m continuous basis, halved by a conventional core splitter on site with one half sent to the Andes Analytical Assay preparation laboratory in Copiapó and the pulps then sent to the same company laboratory in Santiago for assaying. Samples were prepared using the following standard protocol: drying; crushing all sample to -1/4" and passing through a secondary crusher to better than 80% passing -10#; homogenizing; splitting; pulverizing a 400-600g subsample to 95% passing -150#; and a 125g split of this sent for assaying. All samples were assayed for %CuT (total copper); %CuS (acid soluble copper). A full QA/QC program, involving insertion of appropriate blanks, standards and duplicates was employed with acceptable results. Pulps and sample rejects are stored by Marimaca Copper for future reference.

Qualified Person / Competent Person

The technical information in this news release, including the information that relates to geology, drilling and mineralization was prepared under the supervision of, or has been reviewed by Sergio Rivera, Vice President of Exploration, Marimaca Copper Corp, a geologist with more than 40 years of experience and a member of the Colegio de Geólogos de Chile and of the Institute of Mining Engineers of Chile, and who is the Qualified Person for the purposes of NI 43-101 responsible for the design and execution of the drilling program.

The information in this announcement which relates to exploration results for the Pampa Medina Project is based on, and fairly reflects, information and supporting documentation prepared by Sergio Rivera, VP Exploration of Marimaca, a Competent Person who is a member of the Comision Minera (Chilean Mining Commission), Colegio de Geólogos de Chile and of the Institute of Mining Engineers of Chile. Mr. Rivera has sufficient experience that is relevant to the style of mineralisation and types of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Rivera consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Contact Information

For further information please visit www.marimaca.com or contact:

Tavistock
+44 (0) 207 920 3150
Emily Moss / Ruairi Millar
marimaca@tavistock.co.uk

Forward Looking Statements

This news release includes certain "forward-looking statements" under (without limitation) applicable Canadian securities legislation, including, without limitation, statements regarding the development of activities at Pampa Medina, the potential growth of Pampa Medina, and the discovery's potential to complement the MOD. There can be no assurance that such statements will prove to be accurate, and actual results and future events could differ materially from those anticipated in such statements. Forward-looking statements reflect the beliefs, opinions and projections on the date the statements are made and are based upon a number of assumptions and estimates that, while considered reasonable by Marimaca Copper, are inherently subject to significant business, economic, competitive, political and social uncertainties and contingencies. Many factors, both known and unknown, could cause actual results, performance or achievements to be materially different from the results, performance or achievements that are or may be expressed or implied by such forward-looking statements and the parties have made assumptions and estimates based on or related to many of these factors. Such factors include, without limitation: risks that the development activities at Pampa Medina will not progress as anticipated, or at all, risks related to share price and market conditions, the inherent risks involved in the mining, exploration and development of mineral properties, the uncertainties involved in interpreting drilling results and other geological data, fluctuating metal prices, the possibility of project delays or cost overruns or unanticipated excessive operating costs and expenses, uncertainties related to the necessity of financing, uncertainties relating to regulatory procedure and timing for permitting submissions and reviews, the availability of and costs of financing needed in the future as well as those factors disclosed in the annual information form of the Company dated March 27, 2025 and other filings made by the Company with the Canadian securities regulatory authorities (which may be viewed at www.sedar.com). Readers should not place undue reliance on forward-looking statements. Marimaca Copper undertakes no obligation to update publicly or otherwise revise any forward-looking statements contained herein whether as a result of new information or future events or otherwise, except as may be required by law.

None of the TSX, ASX or the Canadian Investment Regulatory Organization accepts responsibility for the adequacy or accuracy of this release.

This announcement was authorised for release to the ASX by the Board of Directors of the Company.

Appendix 1 - JORC Code 2012 Table 1 (ASX Listing Rule 5.7.1)

Section 1 Sampling Techniques and Data

Criteria

JORC Code explanation

Sampling techniques

- *Nature and quality of sampling (eg cut channels, random channels, systematic, etc.)*
- *Include reference to measures taken to ensure sample representativeness*
- *Aspects of the determination of mineralisation that are Material*
- *In cases where 'industry standard' work has been done this*

Drilling techniques

- Drill type (eg core, reverse circulation, open-hole hammer, etc)

Drill sample recovery

- Method of recording and assessing core and chip sample recovery
- Measures taken to maximise sample recovery and ensure representative samples
- Whether a relationship exists between sample recovery and geological interpretation

Logging

- Whether core and chip samples have been geologically and geophysically logged
- Whether logging is qualitative or quantitative in nature. Core description and data entry procedures
- The total length and percentage of the relevant intersections logged

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all sections taken
- If non-core, whether riffled, tube sampled, rotary split, etc and whether oriented or not
- For all sample types, the nature, quality and appropriateness of the sample
- Quality control procedures adopted for all sub-sampling stages
- Measures taken to ensure that the sampling is representative
- Whether sample sizes are appropriate to the grain size of the material

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures
- For geophysical tools, spectrometers, handheld XRF instruments, etc
- Nature of quality control procedures adopted (eg standards, duplicates, etc)

Verification of sampling and assaying

- The verification of significant intersections by either independent check sampling or by other means
- The use of twinned holes
- Documentation of primary data, data entry procedures, data verification, quality control data and statistics used
- Discuss any adjustment to assay data

Location of data points

- Accuracy and quality of surveys used to locate drill holes (collar locations, dip and azimuths)
- Specification of the grid system used
- Quality and adequacy of topographic control

Data spacing and distribution

- Data spacing for reporting of Exploration Results
- Whether the data spacing and distribution is sufficient to estimate geological and geophysical parameters
- Whether sample compositing has been applied

Orientation of data in relation to geological structure

- Whether the orientation of sampling achieves unbiased sampling of geological structures
- If the relationship between the drilling orientation and the orientation of geological structures is discussed

Sample security

- *The measures taken to ensure sample security.*

Audits or reviews

- *The results of any audits or reviews of sampling techniques*

Section 2: Reporting of Exploration Results

Criteria

JORC Code explanation

Mineral tenement and land tenure status

- *Type, reference name/number, location and ownership of the mineral tenement and land tenure status*
- *The security of the tenure held at the time of reporting*

Exploration done by other parties

- *Acknowledgment and appraisal of exploration by other parties*

Geology

- *Deposit type, geological setting and style of mineralisation*

Drill hole Information

- *A summary of all information material to the uncorrected data*
 - *easting and northing of the drill hole collar*
 - *elevation or RL (Reduced Level - elevation above sea level) of the drill hole collar*
 - *dip and azimuth of the hole*
 - *down hole length and interception depth*
 - *hole length*
- *If the exclusion of this information is justified or unavoidable*

Data aggregation methods

- *In reporting Exploration Results, weighting averaging and other data aggregation techniques*
- *Where aggregate intercepts incorporate short lengths of high-grade material which are not included in the reported intercepts, the reasons for this exclusion*
- *The assumptions used for any reporting of metal grades*

Relationship between mineralisation widths and intercept lengths

- *These relationships are particularly important in reporting short intercepts*
- *If the geometry of the mineralisation with respect to the drill hole axes is unknown, the assumptions used for reporting intercept lengths*
- *If it is not known and only the down hole length is reported*

Diagrams

- *Appropriate maps and sections (with scales) a*

Balanced reporting

- *Where comprehensive reporting of all Explorati*

Other substantive exploration data

- *Other exploration data, if meaningful and mate*

Further work

- *The nature and scale of planned further work (*
- *Diagrams clearly highlighting the areas of poss*

Infographics accompanying this announcement are available at

<https://www.globenewswire.com/NewsRoom/AttachmentNg/332a7840-2cc2-4c78-a638-9e282786f709>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/50c9eedd-7576-49cf-a5c7-653dfe22185a>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/2883183a-f75a-4564-8162-28d4bc4f63ce>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/359456f3-6464-4e2c-b7f5-72f3b5b7c0da>

Dieser Artikel stammt von [Rohstoff-Welt.de](https://www.rohstoff-welt.de).

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/702082--High-Grade-Sediment-Hosted-Mineralization-Extended-at-Pampa-Medina--300m-Western-Step-out-SMRD-16-Inte>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinien](#).