

Significant Results from RC Drilling at Tibooburra Gold Project

09.07.2025 | [GlobeNewswire](#)

HIGHLIGHTS

- Novo completed its maiden drill program at the Clone prospect as part of the Tibooburra Gold Project, in May 2025
- Drilling produced significant high-grade gold intercepts including:
 - 12 m @ 5.90 g/t Au from 16 m, including 5 m @ 13.74 g/t Au from 23 m (TBR0001)
 - 17 m @ 2.40 g/t Au from 59 m including 9 m @ 4.14 g/t Au from 59 m (TBR0014)
- The peak intercept in hole TBR001 (12 m @ 5.90 g/t Au) fills a 180 m gap in previous drilling by Manhattan Corporation
- Grade and width continuity has been successfully demonstrated by the RC drilling and indicates a shallow north
- High-grade intercepts remain open to the north, both down plunge and down dip and warrants follow up RC drilling
- Future work at Tibooburra will include detailed structural analysis to understand controls on mineralisation in the area
- Novo met (and exceeded) its required minimum spend of \$500,000 for the initial farm-in period under the binding term sheet

Mike Spreadborough, Executive Co-Chairman and Acting Chief Executive Officer, said: *"Results from the RC drill program at the Clone prospect include two intercepts above 40 mgx Au, where drilling has successfully intersected high-grade near-surface gold mineralisation consistent with a shallow plunging shoot. The consistency of grade and thickness over a 300 m strike is very encouraging. Follow up RC drilling to extend gold mineralisation to the north is warranted and is now being designed."*

Some 7 km southeast of the Clone prospect, the New Bendigo prospect displays a similar shallow northerly plunge and will also be advanced with structural analysis and interpretation of historic diamond core, in preparation for potential extensional drilling.

Further systematic exploration programs are planned along the full project strike length testing mineralised trends from New Bendigo to Warratta Reef and Pioneer/Phoenix to Clone to identify potential drill targets. Tibooburra remains an exciting exploration project given the extent of the system along a 22 km strike of historic workings, and limited systematic exploration or drilling."

PERTH, Western Australia, July 09, 2025 -- [Novo Resources Corp.](#) (Novo or the Company) (ASX: NVO) (TSX: NVO) (OTCQB: NSRPF) is pleased to announce significant high-grade gold results from the Company's maiden drilling program at the Tibooburra Gold Project (Tibooburra) (Figure 1), located in northwestern NSW. The program comprised 14 holes for 1,984 m, testing 500 m of strike at the Clone prospect (Clone).

Tibooburra is an advanced exploration opportunity and covers much of the historic Albert Goldfields. Tenure includes six granted exploration licences over 630 sq km and covers the historic workings over a strike of over 22 km from Phoenix North to New Bendigo.

In late 2024, Novo completed a binding farm-in/JV agreement for Tibooburra with Manhattan Corporation Limited (ASX: MHC) (Manhattan)¹. The agreement grants Novo an option to acquire a 70% interest in the tenements comprising the Tibooburra Gold Project, subject to (among other things) Novo meeting two minimum expenditure requirements over two 12-month periods.

Novo met (and exceeded) the required minimum spend of \$500,000 for the initial farm in period under the binding term sheet during June 2025.

Figure 1 Tibooburra Gold Project location and tenement map, showing main prospects.

Clone Prospect Surface Exploration

Initial exploration completed by Novo in Q1 2025 focused on Clone² and included detailed structural, lithological and regolith mapping, pXRF analysis of soils and rocks, -80# mesh soil sampling and rock chip sampling.

Novo rock chip sampling returned exceptional peak results of 89.6 g/t Au and 41.9 g/t Au² from mullock dump samples associated with historical workings, and 31.4 g/t Au and 10.4 g/t Au² from limited quartz vein outcrop.

Soil sampling defined a ~ 600 m long and up to 250 m wide coherent gold in soil anomaly at > 30 ppb Au, with standout peak results of 1,585 ppb Au and 1,440 ppb Au².

Mapping defined a west dipping reverse fault/thrust (Clone Thrust) associated with high-grade gold mineralisation. Most historical workings and significant sericite-carbonate alteration are proximal to, or constrained within the fault/shear zone (*Figure 2*). The turbidite stratigraphy is intensley folded (tight to isoclinal) with most fold axes plunging moderately NNW. The intersection of regional foliation and the main structures, provide a shallow north to NNE plunging intersetion, similar to the high-grade shoot plunge defined by the recent drilling.

Figure 2 Clone historic workings, geological interpretation and surface rock chip results².

Clone Prospect RC Drill Program

RC drilling was completed at Clone in May 2025, with 14 holes drilled for 1,984 m on approximately 60 m to 150 m spaced sections (*Figure 3, 4 and 5*).

The program was designed to test 500 m strike of Clone in the main area of historical workings, informed by Novo's geological mapping and sampling and historical drilling by Manhattan³.

Significant results from the RC drill program include:

- 12 m @ 5.90 g/t Au from 16 m including 5 m @ 13.74 g/t Au from 23 m (TBR0001)
- 17 m @ 2.40 g/t Au from 59 m including 9 m @ 4.14 g/t Au from 59 m (TBR0014)

The results show grade and width continuity similar to the original Manhattan RC drilling and support a near-surface shoot of north-plunging high-grade gold mineralisation, now defined over 300 m strike (*Figure 6*).

Drill testing was designed to best intersect interpreted mineralised trends and structures at right angles to minimise bias in sample collection. All intervals are reported as down hole widths, as true orientation of mineralisation is still unknown.

Historical drilling completed by Manhattan in 2023, highlighted potential for shallow dipping high-grade gold mineralisation, testing to a maximum depth of 75 m, with significant drill results returned from eleven holes including:

- 6 m @ 8.39 g/t Au from 82 m (CL0007)

- 9 m at 6.03 g/t Au from 16 m (CL0010)
- 6 m at 4.22 g/t Au from 66 m, including 4 m @ 6.21 g/t Au from 68 m (CL0004)
- 29 m @ 1.37 g/t Au from 61 m , including 19 m @ 1.81 g/t Au from 62 m Au (CL0002)

Broad zones of lower grade mineralisation were also intersected, highlighting the gold fertility of the structural corridor. Drill intercepts from both Novo and Manhattan support this model and include:

- 10 m @ 0.45 g/t Au from 105 m (TBR0013)
- 23 m @ 0.51 g/t Au from 71 m (CL0001)
- 14 m @ 0.5 g/t Au from 17 m (CL0005)
- 10 m @ 0.53 g/t Au from 57 m (CL0007)

Refer Appendix 1 for all drill collar information, and Appendices 2 and 3 for all significant drill assay results.

New Bendigo Prospect

New Bendigo is an advanced target at Tibooburra approximately 7 km southeast of Clone, and along a parallel trend. This was the focus area for Manhattan's drilling programs. The prospect is mostly under cover but has several shafts and extensive historical workings over 2 km strike.

Multiple high-grade gold intercepts were defined during several drill programs by Manhattan at New Bendigo, where peak drill results include:

- 30 m at 4.03 g/t Au from 11 m, including 5 m at 20.86 g/t Au (NB0033)¹
- 16 m at 13.89 g/t Au from 1 m, including 3 m at 69.20 g/t Au (NB0083)¹
- 8 m at 40.5 g/t Au from 70 m, including 3 m at 105.34 g/t Au (NB0089)¹
- 7 m at 13.10 g/t Au from 97 m, including 5 m at 18.01 g/t Au (NB0113)¹
- 13 m at 6.16 g/t Au from 50 m, including 3 m at 25.48 g/t Au (NB0122)¹

Figure 3 Significant intercepts from Novo (green callout) and Manhattan (white callout) RC drilling programs, drill hole and section location and geological interpretation

Figure 4 Clone drill sections with interpreted mineralised envelope and drill intercepts (green callout Novo drilling, grey callout Manhattan drilling) - see Figure 3 for location

Figure 5 Clone drill sections with interpreted mineralised envelope and drill intercepts (green callout Novo drilling, grey callout Manhattan drilling) - see Figure 3 for location

Figure 6 Clone interpreted long section highlighting grade and width continuity, shallow north plunge to the high-grade shoot and mineralising system open to the north (green callout Novo drilling, grey callout Manhattan drilling) - see Figure 3 for location

There is potential for repeated lodes at depth and along the interpreted shallow northerly plunge at New Bendigo, however controls on gold mineralisation are not yet fully understood. Figure 7 shows current interpretation of grade from historical drilling, clearly delineating a northern plunge control on the long

section.

Novo has not conducted data verification (as that term is defined in *National Instrument 43-101 Standards of Disclosure for Mineral Projects and JORC 2012*) in respect of the above data from New Bendigo and therefore is not to be regarded as reporting, adopting or endorsing those results/figures. No assurance can be given that Novo will achieve similar results.

Figure 7 Long section interpretation at New Bendigo by Novo, based on historical data.

Tibooburra Geological Model

The mineralisation at Tibooburra is classified as an orogenic gold system hosted within a turbidite-dominated sequence, sharing key structural and geological similarities with the turbidite-hosted gold deposits of Central Victoria's Western Lachlan Orogen (Figure 8). The historic workings at Tibooburra extend over 22 km along strike.

Similarities between Tibooburra and Central Victoria include moderate west dipping mineralised reverse faults, tight shallow plunging folds, age of the host rocks, mineralisation styles and structural deformation history. The current understanding of the Clone and New Bendigo prospects provides several possibilities for the detailed mineralisation style (Figure 8) and structural control on the high-grade shoots.

Figure 8 Simplified structural model for orogenic turbidite-hosted gold deposits of Central Victoria (not depth specific) and examples of these deposits in Victoria (modified and adapted from W.R.H Ramsay et al 1998 and Hitchman et al 2017).

This rationale, adapted from Ramsay et al. (1998), Hitchman et al. (2017), and Greenfield and Reid (2006)⁴, underscores Tibooburra's potential as an orogenic gold system, with exploration focused on structurally controlled targets analogous to the Victorian Goldfields.

While Novo believes such similarities exist, no assurance can be given that Novo will achieve similar results at its Tibooburra Project.

Forward Program

Next steps at Tibooburra include designing follow up RC drilling at Clone to test the northern extension of the high-grade shoot defined by Novo over 300 m strike in recent drilling. In addition, planned work at Clone includes down hole imaging to determine if structural data (vein orientations) can be obtained, and whether this provides a useful basis for structural targeting.

Relogging of core from New Bendigo is also planned to better identify controls on gold mineralisation at the prospect. New Bendigo displays a similar shallow northerly plunge to Clone and will also be assessed for extensional RC drilling.

Further and broader scale work at Tibooburra will be systematic and will focus on understanding the belt-wide structural controls on gold mineralisation by mapping and sampling the northern extension of the Clone Trend at Pioneer / Phoenix, and by mapping the Waratah Reef and southern New Bendigo areas.

Authorised for release by the Board of Directors.

CONTACT

Investors:	North American Queries:	Media:
Mike Spreadborough	Leo Karabelas	Cameron Gilenko
+61 8 6400 6100	+1 416 543 3120	+61 466 984 953
info@novoresources.com	leo@novoresources.com	cameron.gilenko@sodali.com

QP STATEMENT

Mrs Karen (Kas) De Luca (MAIG), is the qualified person, as defined under National Instrument 43-101 *Standards of Disclosure for Mineral Projects*, responsible for, and having reviewed and approved, the technical information contained in this news release. Mrs De Luca is Novo's General Manager Exploration.

JORC COMPLIANCE STATEMENT

The information in this news release that relates to new exploration results at Tibooburra is based on information compiled by Mrs De Luca, who is a full-time employee of Novo Resources Corp. Mrs De Luca is a Competent Person, as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves', who is a member of the Australian Institute of Geoscientists. Mrs De Luca has sufficient experience that is relevant to the style of mineralisation and the type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person. Mrs De Luca consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

The information in this news release that relates to previously reported exploration results at the Tibooburra Project is extracted from:

- (a) Novo's ASX announcement entitled "Novo Strengthens Portfolio with Two High-Grade Gold Projects in NSW, Australia" released to ASX on 13 December 2024; and
- (b) Novo's ASX announcement entitled "Promising Surface Exploration Informs Tibooburra RC Drilling Program" released to ASX on 2 April 2025,

each of which is available to view at www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the competent persons findings are presented have not been materially modified from the original market announcements.

FORWARD-LOOKING STATEMENTS

Some statements in this news release may contain "forward-looking statements" within the meaning of Canadian and Australian securities law and regulations. In this news release, such statements include but are not limited to planned exploration activities and the timing of such. These statements address future events and conditions and, as such, involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the statements. Such factors include, without limitation, customary risks of the resource industry and the risk factors identified in Novo's annual information form for the year ended December 31, 2024 (which is available under Novo's profile on SEDAR+ at www.sedarplus.ca and at www.asx.com.au) and in the Company's prospectus dated 2 August 2023 which is available at www.asx.com.au. Forward-looking statements speak only as of the date those statements are made. Except as required by applicable law, Novo assumes no obligation to update or to publicly announce the results of any change to any forward-looking statement contained or incorporated by reference herein to reflect actual results, future events or developments, changes in assumptions or changes in other factors affecting the forward-looking statements. If Novo updates any forward-looking statement(s), no inference should be drawn that the Company will make additional updates with respect to those or other forward-looking statements.

1 Refer to ASX news release by Novo Resources dated 13/12/2024 - Novo Strengthens Portfolio with Two High-Grade Gold Projects in NSW, Australia.

2 Refer to ASX news release by Novo Resources dated 02/04/2025 - Promising Surface Exploration Informs Tibooburra RC Drilling Program

3 Refer to ASX news release by Manhattan Corp dated 10/07/2023 - New High-Grade Gold Discovery

- ⁴ Greenfield J & Reid W, 2006. Orogenic gold in the Tibooburra area of northwestern NSW- a ~440 Ma ore system with comparison to the Victorian Goldfields, ASEG Extended Abstracts, 2006:1, 1-8
- Ramsay W.R.H, Bierlein F.P, Arne D.C and Vanden Berg A.H.M, 1998. Turbidite-hosted gold deposits of Central Victoria, Australia: their regional setting, mineralising styles, and some genetic constraints, *Ore Geology Reviews*, Volume 13, Issues 1-5, 1998, Pages 131-151
- Hitchman, S.P., Phillips, N.J. and Greenberger, O.J., 2017 - Fosterville gold deposit: *in* Phillips, G.N., (Ed.), 2017 Australian Ore Deposits, *The Australasian Institute of Mining and Metallurgy*, Mono 32, pp. 791-796.

ABOUT NOVO

Novo is an Australian based gold explorer listed on the ASX and the TSX focussed on discovering standalone gold and copper projects with > 1 Moz development potential. Novo is an innovative gold explorer with a significant land package covering approximately 5,500 square kilometres in the Pilbara region of Western Australia, along with the 22 square kilometre Belltopper project in the Bendigo Tectonic Zone of Victoria, Australia.

Novo's key project area in the Pilbara is the Egina Gold Camp, where [Northern Star Resources Ltd.](#) (ASX: NST) is farming-in to form a JV at the Becher Project and surrounding tenements through exploration expenditure of A\$25 million within 4 years for a 50% interest. The Becher Project has similar geological characteristics as Northern Star's 12.7 Moz Hemi Project[#]. Novo is also advancing gold exploration south of Becher in the Egina Gold Camp, part of the Croydon JV (Novo 70%: Creasy Group 30%). Novo continues to undertake early-stage exploration elsewhere across its Pilbara tenement portfolio.

Novo has also formed a lithium joint venture with SQM in the Pilbara which provides shareholder exposure to battery metals.

Novo has recently strengthened its high-quality, Australian based exploration portfolio by adding the TechGen John Bull Gold Project in the New England Orogen of NSW, and Manhattan Tibooburra Gold Project in the Albert Goldfields in northwestern NSW. Both projects demonstrate prospectivity for significant discovery and resource definition and align with Novo's strategy of identifying and exploring projects with > 1 Moz Au potential. These high-grade gold projects compliment the landholding consolidation that forms the Toolunga Project in the Onslow District in Western Australia.

Novo has a significant investment portfolio and a disciplined program in place to identify value accretive opportunities that will build further value for shareholders.

Please refer to Novo's website for further information including the latest corporate presentation.

#Refer to De Grey's ASX Announcement, Hemi Gold Project mineral Resource Estimate (MRE) 2024, dated 14 November 2024. No assurance can be given that a similar (or any) commercially viable mineral deposit will be determined at Novo's Becher Project.

Appendix 1: Collar locations for the Tibooburra RC program at Clone. All coordinates are in MGA1994, zone 54

Hole ID	Type	Depth (m)	Easting (m)	Northing (m)	Height (m ASL)	Dip °	Azimuth ° (grid)
TBR0001	RC	70	584,340	6,725,581	185	-60	90
TBR0002	RC	118	584,302	6,725,581	184	-61	94
TBR0003	RC	167	584,262	6,725,580	184	-61	94
TBR0004	RC	205	584,251	6,725,581	183	-71	89
TBR0005	RC	137	584,347	6,725,475	186	-61	62
TBR0006	RC	185	584,314	6,725,454	186	-62	59
TBR0007	RC	65	584,428	6,725,430	188	-60	58
TBR0008	RC	113	584,395	6,725,411	188	-61	56
TBR0009	RC	155	584,364	6,725,392	188	-61	59
TBR0010	RC	101	584,474	6,725,271	184	-61	60
TBR0011	RC	137	584,244	6,725,660	185	-62	90
TBR0012	RC	191	584,235	6,725,660	184	-76	88
TBR0013	RC	149	584,252	6,725,725	184	-66	91
TBR0014	RC	191	584,244	6,725,725	184	-76	89

Appendix 2: Significant intercepts greater than 0.5 gram*metres for the Novo RC program at Clone, using a 0.3 g/t cut-off and 3 m consecutive internal waste. Internal zones of high grade are based on a 0.5 g/t cut off and 2 m consecutive internal waste resulting in > 1 gram * metre

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Gram x metre Au	Intercept
TBR0001	16	28	12	5.90	70.8	12 m @ 5.9 g/t Au from 16 m
<i>including</i>	<i>23</i>	<i>28</i>	<i>5</i>	<i>13.74</i>	<i>68.7</i>	<i>5 m @ 13.74 g/t Au from 23 m</i>
TBR0001	48	50	2	0.41	0.8	2 m @ 0.41 g/t Au from 48 m
TBR0001	61	64	3	0.44	1.3	3 m @ 0.44 g/t Au from 61 m
TBR0003	8	9	1	0.83	0.8	1 m @ 0.83 g/t Au from 8 m
TBR0003	33	34	1	0.50	0.5	1 m @ 0.5 g/t Au from 33 m
TBR0005	6	7	1	0.89	0.9	1 m @ 0.89 g/t Au from 6 m
TBR0005	127	128	1	0.56	0.6	1 m @ 0.56 g/t Au from 127 m
TBR0008	103	104	1	3.79	3.8	1 m @ 3.79 g/t Au from 103 m
TBR0009	141	142	1	0.76	0.8	1 m @ 0.76 g/t Au from 141 m
TBR0011	71	73	2	1.47	2.9	2 m @ 1.47 g/t Au from 71 m
TBR0011	87	90	3	0.35	1.1	3 m @ 0.35 g/t Au from 87 m
TBR0011	99	100	1	0.49	0.5	1 m @ 0.49 g/t Au from 99 m
TBR0013	55	58	3	0.47	1.4	3 m @ 0.47 g/t Au from 55 m
TBR0013	82	86	4	1.64	6.6	4 m @ 1.64 g/t Au from 82 m
<i>including</i>	<i>83</i>	<i>86</i>	<i>3</i>	<i>2.05</i>	<i>6.2</i>	<i>3 m @ 2.05 g/t Au from 83 m</i>
TBR0013	105	115	10	0.45	4.5	10 m @ 0.45 g/t Au from 105 m
<i>including</i>	<i>110</i>	<i>115</i>	<i>5</i>	<i>0.58</i>	<i>2.9</i>	<i>5 m @ 0.58 g/t Au from 110 m</i>
TBR0013	122	124	2	0.93	1.9	2 m @ 0.93 g/t Au from 122 m
<i>including</i>	<i>123</i>	<i>124</i>	<i>1</i>	<i>1.54</i>	<i>1.5</i>	<i>1 m @ 1.54 g/t Au from 123 m</i>
TBR0014	59	76	17	2.40	40.8	17 m @ 2.4 g/t Au from 59 m
<i>including</i>	<i>59</i>	<i>68</i>	<i>9</i>	<i>4.14</i>	<i>37.2</i>	<i>9 m @ 4.14 g/t Au from 59 m</i>
<i>And</i>	<i>73</i>	<i>76</i>	<i>3</i>	<i>0.78</i>	<i>2.3</i>	<i>3 m @ 0.78 g/t Au from 73 m</i>
TBR0014	152	154	2	0.52	1.0	2 m @ 0.52 g/t Au from 152 m

Appendix 3: Significant intercepts greater than 0.5 gram*metres recalculated for the Manhattan 2023 RC program at Clone, using a 0.3 g/t cut-off and 3 m consecutive internal waste. Internal zones of high grade are based on a 0.5 g/t cut off and 2 m consecutive internal waste resulting in > 1 gram * metre

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Gram x metre Au	Intercept
CL0001	21	22	1	0.72	0.7	1 m @ 0.72 g/t Au from 21 m
CL0001	61	63	2	0.64	1.3	2 m @ 0.64 g/t Au from 61 m
CL0001	71	94	23	0.51	11.7	23 m @ 0.51 g/t Au from 71 m
<i>including</i>	<i>74</i>	<i>84</i>	<i>10</i>	<i>0.74</i>	<i>7.4</i>	<i>10 m @ 0.74 g/t Au from 74 m</i>
CL0002	47	48	1	1.48	1.5	1 m @ 1.48 g/t Au from 47 m
CL0002	61	90	29	1.37	39.6	29 m @ 1.37 g/t Au from 61 m
<i>including</i>	<i>62</i>	<i>81</i>	<i>19</i>	<i>1.81</i>	<i>34.4</i>	<i>19 m @ 1.81 g/t Au from 62 m</i>
<i>And</i>	<i>84</i>	<i>90</i>	<i>6</i>	<i>0.58</i>	<i>3.5</i>	<i>6 m @ 0.58 g/t Au from 84 m</i>
CL0003	18	24	6	1.05	6.3	6 m @ 1.05 g/t Au from 18 m
<i>including</i>	<i>18</i>	<i>22</i>	<i>4</i>	<i>1.43</i>	<i>5.7</i>	<i>4 m @ 1.43 g/t Au from 18 m</i>
CL0004	43	44	1	1.85	1.9	1 m @ 1.85 g/t Au from 43 m
CL0004	52	54	2	0.33	0.7	2 m @ 0.33 g/t Au from 52 m
CL0004	66	72	6	4.22	25.3	6 m @ 4.22 g/t Au from 66 m
<i>including</i>	<i>68</i>	<i>72</i>	<i>4</i>	<i>6.21</i>	<i>24.8</i>	<i>4 m @ 6.21 g/t Au from 68 m</i>
CL0004	81	82	1	0.49	0.5	1 m @ 0.49 g/t Au from 81 m
CL0004	86	89	3	0.34	1.0	3 m @ 0.34 g/t Au from 86 m
CL0004	95	98	3	0.42	1.3	3 m @ 0.42 g/t Au from 95 m
CL0005	17	31	14	0.50	7.0	14 m @ 0.50 g/t Au from 17 m
<i>including</i>	<i>17</i>	<i>18</i>	<i>1</i>	<i>1.00</i>	<i>1.0</i>	<i>1 m @ 1.00 g/t Au from 17 m</i>
<i>And</i>	<i>21</i>	<i>28</i>	<i>7</i>	<i>0.61</i>	<i>4.3</i>	<i>7 m @ 0.61 g/t Au from 21 m</i>
CL0005	35	39	4	0.55	2.2	4 m @ 0.55 g/t Au from 35 m
CL0005	44	49	5	1.63	8.2	5 m @ 1.63 g/t Au from 44 m
<i>including</i>	<i>44</i>	<i>48</i>	<i>4</i>	<i>1.95</i>	<i>7.8</i>	<i>4 m @ 1.95 g/t Au from 44 m</i>
CL0006	38	42	4	1.64	6.5	4 m @ 1.64 g/t Au from 38 m
<i>including</i>	<i>39</i>	<i>42</i>	<i>3</i>	<i>2.03</i>	<i>6.1</i>	<i>3 m @ 2.03 g/t Au from 39 m</i>
CL0006	47	53	6	0.33	2.0	6 m @ 0.33 g/t Au from 47 m
<i>including</i>	<i>52</i>	<i>53</i>	<i>1</i>	<i>0.78</i>	<i>0.8</i>	<i>1 m @ 0.78 g/t Au from 52 m</i>
CL0007	57	67	10	0.53	5.3	10 m @ 0.53 g/t Au from 57 m
<i>including</i>	<i>57</i>	<i>59</i>	<i>2</i>	<i>0.74</i>	<i>1.5</i>	<i>2 m @ 0.74 g/t Au from 57 m</i>
<i>And</i>	<i>62</i>	<i>67</i>	<i>5</i>	<i>0.69</i>	<i>3.5</i>	<i>5 m @ 0.69 g/t Au from 62 m</i>
CL0007	82	88	6	8.39	50.4	6 m @ 8.39 g/t Au from 82 m
CL0008	24	26	2	1.84	3.7	2 m @ 1.84 g/t Au from 24 m
CL0008	31	33	2	0.45	0.9	2 m @ 0.45 g/t Au from 31 m
CL0008	39	42	3	0.59	1.8	3 m @ 0.59 g/t Au from 39 m
<i>including</i>	<i>39</i>	<i>41</i>	<i>2</i>	<i>0.68</i>	<i>1.4</i>	<i>2 m @ 0.68 g/t Au from 39 m</i>
CL0008	61	67	6	0.92	5.5	6 m @ 0.92 g/t Au from 61 m
<i>including</i>	<i>61</i>	<i>67</i>	<i>6</i>	<i>0.92</i>	<i>5.5</i>	<i>6 m @ 0.92 g/t Au from 61 m</i>
CL0009	24	32	8	1.12	8.9	8 m @ 1.12 g/t Au from 24 m
CL0009	37	40	3	0.58	1.7	3 m @ 0.58 g/t Au from 37 m
<i>including</i>	<i>39</i>	<i>40</i>	<i>1</i>	<i>1.24</i>	<i>1.2</i>	<i>1 m @ 1.24 g/t Au from 39 m</i>
CL0010	5	6	1	0.51	0.5	1 m @ 0.51 g/t Au from 5 m
CL0010	16	25	9	6.03	54.3	9 m @ 6.03 g/t Au from 16 m
CL0010	31	32	1	1.03	1.0	1 m @ 1.03 g/t Au from 31 m
CL0010	40	41	1	0.63	0.6	1 m @ 0.63 g/t Au from 40 m

JORC Code, 2012 Edition - Table 1

Section 1: Sampling Techniques and Data

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation
<i>Sampling techniques</i>	<ul style="list-style-type: none">● <i>Nature and quality of sampling (e.g., cut channels, random or systematic, etc.)</i>● <i>Include reference to measures taken to ensure sample representativeness</i>● <i>Aspects of the determination of mineralisation that are Material to the Type of Mineralisation</i>● <i>In cases where 'industry standard' work has been done this should be clearly stated</i>
<i>Drilling techniques</i>	<ul style="list-style-type: none">● <i>Drill type (e.g., core, reverse circulation, open-hole hammer, rotary, sub-coring, etc.) and details of the coring program</i>
<i>Drill sample recovery</i>	<ul style="list-style-type: none">● <i>Method of recording and assessing core and chip sample recoveries and whether sample recoveries are representative</i>● <i>Measures taken to maximise sample recovery and ensure representative sampling</i>● <i>Whether a relationship exists between sample recovery and geological interpretation</i>
<i>Logging</i>	<ul style="list-style-type: none">● <i>Whether core and chip samples have been geologically and geographically logged</i>● <i>Whether logging is qualitative or quantitative in nature. Core, chip or scale samples</i>● <i>The total length and percentage of the relevant intersections logged</i>
<i>Sub-sampling techniques and sample preparation</i>	<ul style="list-style-type: none">● <i>If core, whether cut or sawn and whether quarter, half or all sections are cut</i>● <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether拒采 (rubbish) material is removed</i>● <i>For all sample types, the nature, quality, and appropriateness of the sample preparation technique</i>● <i>Quality control procedures adopted for all sub-sampling stages</i>● <i>Measures taken to ensure that the sampling is representative</i>● <i>Whether sample sizes are appropriate to the grain size of the material sampled</i>
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none">● <i>The nature, quality and appropriateness of the assaying and laboratory procedures</i>● <i>For geophysical tools, spectrometers, handheld XRF instruments, etc</i>● <i>Nature of quality control procedures adopted (e.g., standard samples, duplicate assays)</i>
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none">● <i>The verification of significant intersections by either independent or duplicate assays</i>● <i>The use of twinned holes</i>● <i>Documentation of primary data, data entry procedures, data verification, data storage and data backup procedures</i>● <i>Discuss any adjustment to assay data</i>
<i>Location of data points</i>	<ul style="list-style-type: none">● <i>Accuracy and quality of surveys used to locate drill holes (collar and true position)</i>● <i>Specification of the grid system used</i>● <i>Quality and adequacy of topographic control</i>
<i>Data spacing and distribution</i>	<ul style="list-style-type: none">● <i>Data spacing for reporting of Exploration Results</i>● <i>Whether the data spacing and distribution is sufficient to establish the sampling bias and whether sample compositing has been applied</i>
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none">● <i>Whether the orientation of sampling achieves unbiased sampling of geological structures and the orientation of data in relation to geological structures</i>● <i>If the relationship between the drilling orientation and the orientation of geological structures is considered to have introduced a sampling bias, the methodology used to mitigate this bias</i>
<i>Sample security</i>	<ul style="list-style-type: none">● <i>The measures taken to ensure sample security</i>

Audits or reviews

- *The results of any audits or reviews of sampling techniques*

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria

JORC Code explanation

Mineral tenement and land tenure status

- *Type, reference name/number, location and ownership of all mineral tenements and land tenure status held at the time of reporting*
- *The security of the tenure held at the time of reporting*

Exploration done by other parties

- *Acknowledgment and appraisal of exploration done by other parties*

Geology

- *Deposit type, geological setting, and style of mineralisation*

Drill hole Information

- *A summary of all information material to the understanding of the exploration results*
- *If the exclusion of this information is justified or explained*

Data aggregation methods

- *In reporting Exploration Results, weighting average and other methods used to aggregate individual intercepts into aggregate intercepts and the assumptions used for any reporting of metal*

Relationship between mineralisation widths and intercept lengths

- *These relationships are particularly important in reporting Exploration Results*
- *If the geometry of the mineralisation with respect to the drill hole is such that it is not known and only the down hole length is reported*
- *If it is not known and only the down hole length is reported*

Diagrams

- *Appropriate maps and sections (with scales) and tables showing the location, geometry and grade of mineralisation*

Balanced reporting

- *Where comprehensive reporting of all Exploration Results is not practicable, reasons for the omission and the location of the data used in the reporting of Exploration Results*

Other substantive exploration data

- *Other exploration data, if meaningful and material*

Further work

- *The nature and scale of planned further work (including reworking of past exploration work)*
- *Diagrams clearly highlighting the areas of possible mineralisation*

No Section 3 or 4 report as no Mineral Resources or Ore Reserves are reported in this Appendix

Figures accompanying this announcement are available at

<https://www.globenewswire.com/NewsRoom/AttachmentNg/4fb3a092-c8fe-47f0-87c2-ba9552627a45>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/aa1cb1b0-5b82-4538-b609-91a659205614>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/388de28c-7f26-48da-a5c2-a90c9e2c7ba9>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/f1e457ea-583b-456b-b45e-efd11af48618>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/f71dbf04-2e9f-4260-bbe8-2eba87833da7>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/bbed8477-b313-49e0-9185-6bb7ea7ed4b7>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/a2f8edad-2f79-45cc-9657-8f9440339910>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/c352ebf5-9ba6-4586-8914-ba6e39c73e65>

<https://www.globenewswire.com/NewsRoom/AttachmentNg/ba7864e6-cca8-480c-b1fc-57b43545340b>

Dieser Artikel stammt von [Rohstoff-Welt.de](https://www.rohstoff-welt.de)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/698078--Significant-Results-from-RC-Drilling-at-Tibooburra-Gold-Project.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinien](#).