Golden Dawn Minerals: Ergebnisse von 33 Bohrlöchern, die 2017 im Konzessionsgebiet Golden Crown abgeschlossen wurden

30.01.2018 | IRW-Press

Ergebnisse variieren zwischen 1,02 g/t Au auf 0,3 m und 58,3 g/t Au auf 0,4 m

30. Januar 2018 - Wolf Wiese, CEO von Golden Dawn Minerals Inc. (TSX-V: GOM, Frankfurt: 3G8A, OTC: GDMRF) (Golden Dawn oder das Unternehmen), meldet die endgültigen Ergebnisse der Oberflächen-Diamantbohrungen 2017 in seinem Konzessionsgebiet Golden Crown, das Teil des Edelmetallprojekts Greenwood ist.

Die Oberflächen-Diamantbohrungen 2017 im Konzessionsgebiet Golden Crown umfassten insgesamt 3.121 Meter in 33 Bohrlöchern. Die Ergebnisse der Bohrlöcher 1 bis 19 wurden bereits veröffentlicht (siehe Pressemitteilung vom 4. Dezember 2017). Die bedeutsamen Ergebnisse der Bohrlöcher 20 bis 33 sind in der nachfolgenden Tabelle angegeben, gefolgt von Ergebnissen der ersten 19 Bohrlöcher in einer separaten Tabelle.

Tabelle der bedeutsamen Ergebnisse 2017 der Golden-Crown-Bohrlöcher 20-33

10.11.2025 Seite 1/13

```
BohrloVon Bis
               LängeErprobGold KupfeSilbeAnmerkung
       (m) (m)
                 (m) te
                            (g/tr
                      Länge)
                                 (왕)
                                     (g/t
GC17-260,8862,621,74 1,74 11,110,23 7,0 Durchschni
einsch60,8861,180,30 0,30 13,400,58 8,3
                                          Sulfiderzq
ließli
                                          ängchen
ch
61,1861,880,70 0,70 0,28 0,11 2,0
                                    Sulfiderzg
                                    ängchen
61,8862,310,43 0,43 0,93 0,21 6,5
                                    Sulfiderzg
                                    ängchen
62,3162,620,31 0,31 47,500,16 17,6 Sulfiderzg
                                    ängchen
GC17-270,6572,001,35 1,35 4,50 0,12 n.
                                          Durchschni
      70,6570,940,29 0,29 15,600,35 4,2
                                          Quarz-Sulf
                                          id-Erzgang
einsch70,9471,250,31 0,31 0,42 0,07 0,2
                                          Sulfiderzg
ließli
                                          ängchen
ch
      71,2571,700,45 0,45 0,07 0,02 n.
                                          Sulfiderzg
                                      v.
                                          ängchen
                                      В.
      71,7072,000,30 0,30 4,64 0,10 1,1
                                          Quarz-Sulf
                                          id-Erzgang
GC17-279,6780,000,33 0,33
                          10,800,93 16,0 Sulfiderzg
                                          ängchen
GC17-2102,4103,20,62 0,62
                          16,501,33 12,95Durchschni
      0
einsch102,4102,70,36 0,36
                           26,402,19 20,5 Massivsulf
ließli0
                                          id (Zone
ch
                                           South)
102,7103,20,26 0,26 2,79 0,14 2,5
                                    Sulfiderzg
                                    ängchen
GC17-265,7266,140,42 0,42 17,800,90 12,0 Massivsulf
                                          id (Zone
                                           South)
76,3776,770,40 0,40 1,98 0,08 1,2 Verwerfung
                                     mit
                                     Quarz-Sul
                                    fid-Erzgan
83,2583,600,35 0,35 6,58 0,04 0,1
                                   Verwerfung
                                    sfurche
```

10.11.2025 Seite 2/13

Tabelle der bedeutsamen Ergebnisse 2017 der Golden-Crown-Bohrlöcher 20-33 (Fortsetzung)

```
GC17-293,6794,671,00 1,00
                          14,2 0,53811,3 Durchschni
                                5
einsch93,6794,170,50 0,50 17,000,49 9,9
                                          Massivsulf
ließli
                                          id (Zone
ch
                                           South)
94,1794,670,50 0,50 11,400,58 12,7 Massivsulf
                                    id (Zone
                                     South)
GC17-280,7781,630,86 0,86 2,04 0,04 0,6 Disseminie
                                           Sulfide
GC17-2118,7119,00,35 0,35
                          1,26 0,04 0,7
                                          Sulfiderzg
     1
                                          ängchen
GC17-2126,2126,60,39 0,39 4,74 0,59 7,3
                                          Quarz-Sulf
     4
                                          id-
                                          Erzgängche
130,9131,70,80 0,80 10,300,62 11,3 Massivsulf
0 0
                                    id (Zone
                                     South)
135,1135,40,33 0,33
                     4,14 0,54 8,6
                                    Massivsulf
4
    7
                                    id (Zone
                                     South)
142,6143,00,38 0,38 1,06 0,04 1,0
                                    Sulfiderzg
    6
                                    ängchen
153,9154,30,37 0,37 3,86 0,33 4,0
                                    Massivsulf
                                    id (Zone
                                     South)
GC17-277,9178,210,30 0,30 14,801,43 15,40Massivsulf
                                          id (Zone
                                           South)
80,0480,350,31 0,31 1,43 0,05 0,6
                                    Pyrit in
                                     Brüchen
83,6084,000,40 0,40 4,33 0,16 1,0
                                    Massivsulf
                                    id (Zone
                                     South)
93,8394,140,31 0,31 3,12 0,08 1,0
                                    Sulfiderzg
                                    ängchen
GC17-358,1559,811,66 1,66 15,201,37 20,1 Durchschni
einsch58,1558,630,48 0,48 24,201,83 30,9 Massivsulf
ließli
                                          id (Zone
                                           South)
ch
58,6359,120,49 0,49 16,501,90 22,0
59,1259,510,39 0,39 4,66 0,23 3,6
59,5159,810,30 0,30 12,401,23 21,0 Quarz-Sulf
                                    id-
                                    Erzgängche
```

10.11.2025 Seite 3/13

G17-3062,3063,082,28	2,28	3,18 0,11	1,2 Durchschni tt	
einsch62,3063,080,78 ließli ch	0,78	5,02 0,21	2,1 Sulfiderzg ängchen	
63,0863,580,50 0,50	4,17	0,12 1,2	Sulfiderzg ängc hen	
63,5864,581,00 1,00	1,24	0,04 0,4	Sulfiderzg ängchen	
G17-3070,4271,541,12	1,12	1,26 0,06	0,4 Sulfiderzg ängchen	
GC17-36,83 7,73 0,90	0,90	2,92 0,18	3,0 Sulfiderzg ängchen	
12,6613,1 0,44 0,11	3,68	0,60 12,5	Sulfiderzg ängchen	
16,3917,230,84 0,84	1,01	0,02 3,0	Sulfiderzg ängchen	
60,4360,750,32 0,32	1,62	1,80 26,7	Massivsulf id (Zone	
107,2107,80,62 0,62 2 4	1,15	v.	Samaritan) Disseminie rte Sulfide	
149,6149,90,32 0,32 3 5	2,45	0,16 1,3	Massivsulf id (Zone King)	
			id (Zone King)	
3 5 GC17-3158,3160,31,97	1,97	1,62 0,24	id (Zone King) 4,28 Durchschni tt	
3 5 GC17-3158,3160,31,97 1 3 0 158,3159,31,05	1,97	1,62 0,24	id (Zone King) 4,28 Durchschni tt 1,1 Sulfiderzg ängchen	
3 5 GC17-3158,3160,31,97 1 3 0 158,3159,31,05 3 8 einsch159,3159,80,42 ließli8 ch	1,97 1,05 0,42	1,62 0,24 1,14 0,08 1,80 0,36	id (Zone King) 4,28 Durchschni tt 1,1 Sulfiderzg ängchen 4,6 Sulfiderzg	
3 5 GC17-3158,3160,31,97 1 3 0 158,3159,31,05 3 8 einsch159,3159,80,42 ließli8 ch	1,97 1,05 0,42	1,62 0,24 1,14 0,08 1,80 0,36 2,46 0,50	id (Zone King) 4,28 Durchschni tt 1,1 Sulfiderzg ängchen 4,6 Sulfiderzg ängchen 10,7 Quarz-Sulf id-Erzgang	
3 5 GC17-3158,3160,31,97 1 3 0 158,3159,31,05 3 8 einsch159,3159,80,42 ließli8 ch 159,8160,30,50 GC17-372,0772,570,50	1,97 1,05 0,42 0,5	1,62 0,24 1,14 0,08 1,80 0,36 2,46 0,50 1,71 0,04	id (Zone King) 4,28 Durchschni tt 1,1 Sulfiderzg ängchen 4,6 Sulfiderzg ängchen 10,7 Quarz-Sulf id-Erzgang 0,7 Sulfiderzg ängchen	
3 5 GC17-3158,3160,31,97 1 3 0 158,3159,31,05 3 8 einsch159,3159,80,42 ließli8 ch 159,8160,30,50 GC17-372,0772,570,50 2	1,97 1,05 0,42 0,5 0,5	1,62 0,24 1,14 0,08 1,80 0,36 2,46 0,50 1,71 0,04 0,07 1,9	id (Zone King) 4,28 Durchschni tt 1,1 Sulfiderzg ängchen 4,6 Sulfiderzg ängchen 10,7 Quarz-Sulf id-Erzgang 0,7 Sulfiderzg ängchen Sulfiderzg ängchen	
3 5 GC17-3158,3160,31,97 1 3 0 158,3159,31,05 3 8 einsch159,3159,80,42 ließli8 ch 159,8160,30,50 GC17-372,0772,570,50 2 87,9388,230,30 0,30 GC17-37,33 7,67 0,34	1,97 1,05 0,42 0,5 0,5	1,62 0,24 1,14 0,08 1,80 0,36 2,46 0,50 1,71 0,04 0,07 1,9 1,72 0,13	id (Zone King) 4,28 Durchschni tt 1,1 Sulfiderzg ängchen 4,6 Sulfiderzg ängchen 10,7 Quarz-Sulf id-Erzgang 0,7 Sulfiderzg ängchen Sulfiderzg ängchen Sulfiderzg ängchen 3,6 Sulfiderzg	
3 5 GC17-3158,3160,31,97 1 3 0 158,3159,31,05 3 8 einsch159,3159,80,42 ließli8 ch 159,8160,30,50 GC17-372,0772,570,50 2 87,9388,230,30 0,30 GC17-37,33 7,67 0,34 3	1,97 1,05 0,42 0,5 0,5 1,97 0,34	1,62 0,24 1,14 0,08 1,80 0,36 2,46 0,50 1,71 0,04 0,07 1,9 1,72 0,13	id (Zone King) 4,28 Durchschni tt 1,1 Sulfiderzg ängchen 4,6 Sulfiderzg ängchen 10,7 Quarz-Sulf id-Erzgang 0,7 Sulfiderzg ängchen Sulfiderzg ängchen 3,6 Sulfiderzg ängchen Quarz-Sulf	

10.11.2025 Seite 4/13

3 4 rte und

Erzgängche nsulfide

n. v. B. = nicht von Bedeutung; g/t = Gramm pro Tonne

10.11.2025 Seite 5/13

Die für die Bohrlöcher angegebenen Mächtigkeiten der Zonen sind Kernlängen, die sich von der wahren Mächtigkeit unterscheiden könnten. Zurzeit stehen keine ausreichenden Daten zur Verfügung, um die wahre Mächtigkeit der Zonen akkurat zu schätzen.

Tabelle der bedeutsamen Ergebnisse der Golden-Crown-Bohrlöcher 1-19

```
LängeErprobGold KupfeSilbeAnmerkung
BohrloVon Bis
                  (m) te
       (m) (m)
                              (g/tr
                       Länge)
                                   (왕)
                                        (g/t
GC17-09,24 21,5812,306,91 3,53 0,11 n.
                                             Durchschni
                                             tt
                                         В.
                                              (King)
einsch9,24 9,79 0,55 0,55
                                             Sulfiderzg
                             1,61 n.
                                        n.
ließli
                                             ängchen
                                         v.
ch
                                   В.
                                         В.
9,79 14,024,23 0,89
                     1,08 0,13 n.
                                       Sulfiderzq
                                       ängchen
                                  v.
                                  В.
14,0214,830,81 0,81
                                      Massivsulf
                      3,58 0,19 n.
                                       id
                                  v.
                                  В.
                                        (King)
14,8317,002,17 0,59
                                       Sulfiderzg
                      n.
                            n.
                                 n.
                                  v.
                                       ängchen
                       v.
                             v.
                       В.
                             В.
                                  В.
17,0017,570,57 0,57
                      7,57 0,08 n.
                                      Massivsulf
                                  v.
                                       id
                                  В.
                                        (King)
17,5718,180,61 0,61
                                      Massivsulf
                      4,03 0,15 n.
                                       id
                                  v.
                                  В.
                                        (King)
18,1818,840,66 0,66
                      14,100,18 n.
                                      Massivsulf
                                  В.
                                        (King)
18,8419,740,9 0,52
                      2,52 0,11 n.
                                      Massivsulf
                                       id
                                  В.
                                        (King)
                                       57%
                                        Gewinnung
                                       srate
19,7420,6 0,86 0,86
                      17,300,27 n.
                                      Massivsulf
                                       id
                                  v.
                                  В.
                                        (King)
                                       Sulfiderzg
20,6 21,580,98 0,85
                      1,91 n.
                                 n.
                                       ängchen
                             v.
                                  v.
                             В.
                                  В.
                             1,05 n.
                                             Sulfiderza
GC17-024,2 25,1 0,9
                      0,9
                                       n.
                                             ängchen
                                   v.
                                        v.
                                   В.
                                        В.
41,4742,471,0 1,0
                      1,04 n.
                                       Sulfiderzg
                                 n.
                                       ängchen
                             v.
                                  v.
```

10.11.2025 Seite 6/13

```
В.
                                В.
69,5469,950,41 0,41 11,200,12 n.
                                     Massivsulf
                                     id
                                      (King)
                                В.
GC17-014,6521,606,95 6,95 6,77 1,18
                                           Durchschni
                                           tt
                                            (King)
einsch14,6514,960,31 0,31 1,36 3,19 37,4 Massivsulf
ließli
                                           iд
ch
                                            (King)
14,9615,950,99 0,99 n.
                               n.
                                     Sulfiderzq
                          n.
                                     ängchen
                           v.
                                v.
                      В.
                           В.
                                В.
15,9516,920,97 0,97 0,51 0,60 9,0
                                    Sulfiderzg
                                     ängchen
16,9218,131,21 1,21 0,14 0,71 10,3 Sulfiderzg
                                     ängchen
18,1318,440,31 0,31 16,904,15 72,7 Massivsulf
                                     id
                                      (King)
18,4418,840,40 0,40 58,303,18 75,6 Massivsulf
                                      (King)
18,8419,240,40 0,40 24,503,92 67,5 Massivsulf
                                     id
                                      (King)
19,2420,561,32 1,32 0,81 0,19 3,0
                                    Sulfiderzg
                                     ängc
                                     hen
20,5620,820,26 0,26
                    18,803,47 59,9 Sulfiderzg
                                     ängchen
20,8221,280,46 0,46 2,72 0,57 9,7
                                     Sulfiderzg
                                     ängchen
21,2821,600,32 0,32 1,01 0,64 13,5 Sulfiderzg
                                     ängchen
BohrloVon Bis
                LängeErprobGold KupfeSilbeAnmerkung
       (m) (m)
                             (g/tr
                      Länge)
GC17-047,9848,360,38 0,38 2,01 0,12 n.
                                           Sulfiderzg
                                           ängchen
                                       v.
                                       В.
79,9680,520,56 0,56 12,600,26 2,9
                                    Massivsulf
                                     id
                                      (Winnipeg
80,5281,220,7 0,7
                    7,55 0,23 2,4
                                    Massivsulf
                                     id
                                      (Winnipeg
                                     )
```

10.11.2025 Seite 7/13

```
Sulfiderza
109,1109,40,3 0,3
                      2,71 n.
                                n.
                                     ängchen
                            v.
                                 v.
                            В.
                                 В.
GC17-041,9142,210,3 0,3
                            4,01 n.
                                            Sulfiderzg
                                      n.
                                            ängchen
                                  v.
                                       v.
                                  В.
                                       В.
GC17-169,5679,060,5 0,5
                            3,26 0,35 5,4
                                            Massivsulf
                                            id
                                             (King)
GC17-130,3831,180,80 0,80 1,98 3,72 92,8 Massivsulf
                                            (King)
46,9047,650,75 0,75 1,67 0,11 n.
                                     Sulfiderzg
                                     ängchen
                                 v.
                                 В.
GC17-156,4256,700,28 0,28 6,75 n.
                                            Massivsulf
                                      n.
                                            id
                                  v.
                                       v.
                                  В.
                                       В.
                                             (King)
60,2060,700,50 0,50 2,45 0,09 n.
                                     Sulfiderzg
                                     ängchen
                                 v.
                                 В.
64,3865,881,50 1,50 4,99 0,12 n.
                                     Quarz-Sulf
                                 v.
                                     id-Erzgäng
                                     e in
                                 В.
                                     Serpentini
72,6873,380,70 0,70 1,74 n.
                                     Sulfiderzg
                                n.
                            v.
                                 v.
                                     ängchen
                            В.
                                 В.
GC17-141,0 42,131,13 1,13 2,51 0,15 n.
                                            Massivsulf
                                       В.
                                             (King)
GC17-133,8834,450,57 0,57
                            27,200,11 n.
                                            Quarz-Sulf
                                            id-Erzgang
                                       v.
                                       В.
                                            (Portal)
37,1738,471,30 1,30 4,29 0,07 n.
                                     Quarz-Sulf
                                      id-Erzgang
                                 v.
                                 В.
                                      (Portal)
GC17-122,3222,800,48 0,48 2,34 0,10 n.
                                            Quarz-Sulf
                                            id-Erzgang
                                       v.
                                       В.
                                            (Portal)
38,6638,910,25 0,25
                      3,76 n.
                                n.
                                      Quarz-Sulf
                                      id-
                                 v.
                                     Erzgang
                                      (Portal)
                           В.
                                В.
41,0041,500,50 0,50
                      1,30 n.
                                     Grünstein
                                n.
                            v.
                                 v.
                            В.
                                 В.
43,7344,040,31 0,31
                      3,04 0,13 n.
                                     Quarz-Sulf
                                      id-Erzgang
                                 v.
                                 В.
```

10.11.2025 Seite 8/13

```
(Portal)
49,8650,130,27 0,27 1,16 n.
                                n.
                                     Massivsulf
                                     id
                            v.
                                 v.
                                      (Portal)
                            В.
                                 В.
GC17-127,0027,730,73 0,73 7,21 0,24 n.
                                           Quarz-Sulf
                                           id-Erzgang
                                       v.
                                            (Portal)
                                       В.
39,5339,900,37 0,37
                                     Quarz-Sulf
                     7,20 n.
                                n.
                                     id-Erzgang
                            v.
                                 v.
                                      (Portal)
                            В.
                                 В.
45,0045,330,33 0,33 1,13 n.
                                     Sulfiderzg
                                n.
                                v.
                                     ängchen
                            v.
                            В.
                                 В.
49,5051,502,00 2,00 5,11 n.
                                     Quarz-Sulf
                                n.
                                     id-Erzgang
                            v.
                                 v.
                                      & Diorit
                                 В.
                            В.
                                      (Portal)
GC17-131,2531,550,30 0,30 41,400,17 5,9
                                           Quarz-Sulf
                                            id-Erzgang
                                             (Zone
                                            SW)
GC17-158,4759,000,53 0,30 4,09 0,81 6,5
                                           Quarz-Sulf
                                            id-Erzgang
                                             (Zone
                                            SW)
```

10.11.2025 Seite 9/13

Tabelle der bedeutsamen Ergebnisse der Golden-Crown-Bohrlöcher 1-19 (Fortsetzung) n. v. B. = nicht von Bedeutung; g/t = Gramm pro Tonne

Die für die Bohrlöcher angegebenen Mächtigkeiten der Zonen sind Kernlängen, die sich von der wahren Mächtigkeit unterscheiden könnten. Zurzeit stehen keine ausreichenden Daten zur Verfügung, um die wahre Mächtigkeit der Zonen akkurat zu schätzen.

Die oben angegebenen Bohrlöcher 2017 wurden gebohrt, um die Zonen King, Winnipeg, Portal, Southwest und South zu erproben. Im Rahmen des Bohrprogramms wurden Zonen mit beträchtlichem Gold und Kupfer durchschnitten, die mit Massivsulfid- und Quarz-Sulfid-Erzgängen und -Erzgängchen in Zusammenhang stehen. Zu den typischen Sulfidmineralen, in der Reihenfolge ihrer Häufigkeit, zählen Pyrrhotit, Pyrit, Chalkopyrit und Arsenopyrit. Interessante Goldwerte stehen auch mit von Erzgängchen begrenzten und disseminierten Sulfiden im Muttergestein (Metadiorit, Grünstein und Serpentinit) in Zusammenhang.

Die Lagerstätte scheint nun zumindest teilweise aus einem Feld mit mehreren Erzgängen und Erzgängchen zu bestehen, wobei die primären Erzgangstrukturen als Ziele für die Untertageerschließung identifiziert wurden. Wo bedeutsame Goldwerte in Mauergestein neben den Haupterzgängen sowie in Oberflächennähe vorkommen, besteht Potenzial für einen Tagebaubetrieb.

Im Rahmen der Bohrungen 2017 wurden Gehalte und Mächtigkeiten durchschnitten, die jenen ähnlich sind, die bereits für die Lagerstätte Golden Crown gemeldet worden waren. Außerdem wurde eine zusätzliche Mineralisierung am Rande der bekannten Zonen vorgefunden und Erweiterungen mancher erprobter Zonen definiert.

Die Zone Main (Erzgang King und parallele Erzgänge) wurde mittels Abschnitte in den Bohrlöchern GC17-02, -04, -05, -10, -12 und -13 verifiziert. Die Bohrlöcher GC17-11 und -31 haben die Struktur über die zuvor definierten Grenzen hinaus durchschnitten, wobei Bohrloch -31 die Struktur MacArthur möglicherweise um 68 Meter in Richtung Osten erweitert.

Die Zone Winnipeg wurde in Bohrloch GC17-09 durchschnitten, während die Zone Portal in den Bohrlöchern GC17-14, -15 und -16 durchschnitten wurde.

Die Zone MacArthur wurde in den Bohrlöchern GC17-31 und GC17-33 durchschnitten, was darauf hinweist, dass sich die Zone um weitere 28 Meter neigungsabwärts erstreckt, als zuvor definiert wurde. Die Zone Samaritan wurde in diesen Bohrlöchern ebenfalls durchschnitten und möglicherweise um weitere 46 Meter in Richtung Westen definiert und könnte sich über bis zu 95 Meter erstrecken, wo die Sulfidmineralisierung in Bohrloch GC17-32 vorgefunden wurde.

Die Zone Southwest wurde in den Bohrlöchern GC17-18 und -198 durchschnitten, in denen bis zu 54 Meter unterhalb eines Oberflächengrabens auf der Struktur im Jahr 2004 eine Mineralisierung vorgefunden worden war.

Die Zone South wurde in Bohrloch GC17-22 bestätigt, das eine ähnliche Goldmineralisierung durchschnitt wie jene, die in historischen Bohrungen aus dem Jahr 1986 verzeichnet worden war. Die Bohrlöcher GC17-23 bis -26 weisen darauf hin, dass sich diese Zone um über 100 Meter weiter neigungsabwärts erstreckt, während die Zone in Bohrloch GC17-28 weitere 28 Meter neigungsabwärts und 17 Meter östlich eines Bohrabschnitts von 1986 definiert wurde.

In den kommenden Wochen sollen weitere Oberflächen-Explorationsbohrungen beginnen, um den Ressourcenbestand zu steigern, abgeleitete Ressourcen in die angezeigte Kategorie hochzustufen und neue Entdeckungen zu machen. Im Rahmen der ersten Arbeiten werden die westliche Erweiterung der Zone King und die östliche Erweiterung der Zone MacArthur erkundet, die Zone Samaritan in Richtung Osten Ergänzungsbohrungen unterzogen und erweitert sowie die östlichen und westlichen Erweiterungen der Zone Portal erkundet. Das Bohrprogramm wird anschließend in der Zone JD sowie im Gebiet zwischen dem Minenkonzessionsgebiet Golden Crown und JD, innerhalb eines drei Kilometer langen Abschnitts mit anomaler Bodengeochemie und Mineralvorkommen an der Oberfläche, fortgesetzt werden. Die historische Zone JD befindet sich drei Kilometer westlich der Mine Golden Crown und beherbergt Quarz- und Sulfiderzgänge, die jenen ähnlich sind, die im Rahmen der Bohrungen 2017 durchschnitten wurden. Wie in der Pressemitteilung vom 18. Oktober gemeldet, variieren die Goldwerte von einzelnen einen Meter mächtigen Oberflächen-Gesteinssplitterproben im Gebiet JD zwischen 1,8 und 15,8 Gramm Gold pro Tonne mit einem Durchschnittsgehalt von insgesamt 7,4 Gramm Gold pro Tonne. In der nachfolgenden Tabelle sind die gewichteten Durchschnittsergebnisse 2017 von aufeinanderfolgenden Proben (Probentraversen) des Gebiets JD angegeben.

10.11.2025 Seite 10/13

Tabelle der Durchschnittsergebnisse für aufeinanderfolgende Oberflächen-Gesteinssplitterproben im Gebiet JD (2017)

Probe:	nErprobt	Gold Kupfer	rSilbe
travere		(g/t (%)	r
se	Länge)	(g/t
	(m))
1	2,0	10,700,01	3,0
2	2,0	2,36 0,01	0,5
3	2,0	8,31 0,03	3,7
4	1,5	10,640,01	6,1
5	4,0	5,87 0,16	28,8

Das Konzessionsgebiet Golden Crown ist drei Kilometer von der Verarbeitungsanlage Greenwood entfernt und soll in der Anlage abgebaut und verarbeitet werden, sobald die Mine Lexington in Betrieb ist. Das Unternehmen setzt den Genehmigungsprozess für eine Untertagemine und Großprobennahmen im Jahr 2018 fort, was zur vollen Produktion bei der Mine Golden Crown führen wird.

Außerdem wurden im Konzessionsgebiet Lexington im Herbst 2017 Oberflächen-Gesteinssplitterprobennahmen durchgeführt. Der Oberflächenausbiss der historischen Mine City of Paris umfasste eine Quarz-Serizit-alterierte Zone mit disseminiertem Pyrit. Eine Splitterprobe dieser Zone ergab bedeutsame Gehalte und Mächtigkeiten (14,50 Gramm Gold pro Tonne auf einer wahren Mächtigkeit von 4,5 Metern). Dieses Ergebnis rechtfertigt eine weitere Untersuchung, um die Größe der restlichen Mineralisierung bei dieser historischen Mine zu ermitteln.

ERÖRTERUNG:

Die zahlreichen mineralisierten Zonen beim Edelmetallprojekt Greenwood (15.400 Hektar), die in den 34 historischen Minen zum Ausdruck kommen, einschließlich der großen historischen Kupfer-Gold-Mine Phoenix und unserer aktuellen Explorationsergebnisse, weisen auf das Erfordernis hin, dieses Bergbaugebiet ganzheitlich zu untersuchen. Es wird vermutet, dass die zahlreichen Edel- und Grundmetalllagerstätten in diesem Konzessionsgebiet von mehreren geologischen Ereignissen ausgelöst wurden, die eine Unmenge an Mineralisierungsarten gebildet haben, weshalb unsere Geowissenschaftler für alle Möglichkeiten offen bleiben müssen. Bei den Explorationen wird modernste Technologie eingesetzt und die Durchführung erfolgt aus der Vogelperspektive sowie mit einer lokal fokussierten Ansicht, um potenzielle Mineralisierungsquellen beim Edelmetallprojekt Greenwood zu lokalisieren. Das Bergbaugebiet Greenwood befindet sich in einem Gebiet tektonischer Erweiterung, die durch die Republic-Toroda-Gräben zum Ausdruck kommt, die sich vom Süden des 49. Breitengrads in den USA aus erstrecken, wo sie mit Goldlagerstätten im produktiven Bergbaugebiet Republic in Zusammenhang stehen. Frühere Explorationsarbeiten im Gebiet des Edelmetallprojekts Greenwood waren aufgrund der fragmentierten Schürfrechtsbesitze stark eingeschränkt. Aufgrund des Erfolgs unseres Unternehmens bei der Konsolidierung dieses produktiven Abbaugebiets sowie aufgrund des Vorhandenseins einer modernen Verarbeitungsanlage hat das Unternehmen nun die Möglichkeit, sofort Edel- und Grundmetalle zu produzieren. Unsere Arbeiten in den Konzessionsgebieten Lexington und Golden Crown werden in diesem Jahr bis zur Produktion fortgesetzt werden und gleichzeitig wird eine vollständige geologische Bewertung des Gebiets durchgeführt werden, um weitere Ressourcen zu entdecken, um die Lebensdauer des Betriebs zu verlängern.

Das Unternehmen verzeichnet Fortschritte bei der raschen Inbetriebnahme der Minenbetriebe bei der Mine Lexington, etwa 17 Kilometer südlich der Verarbeitungsanlage Greenwood gelegen. Die Entwässerung ist nun abgeschlossen und die Minenplanung sowie die geotechnischen Bewertungen werden vor dem ersten Abbau durchgeführt werden. Die Verarbeitungsanlage Greenwood wird nass in Betrieb genommen werden, sobald der Abbaubetrieb im Gange ist. Das Unternehmen wartet auch auf die Analyseergebnisse, um die Testarbeiten zu quantifizieren, die unter Anwendung modernster Technologie zur Produkt/Endmaterial-Abscheidung mittels Sensorsortierung, die von Steinert US Inc. bereitgestellt wird, durchgeführt wurden.

Alle oben gemeldeten Proben wurden unter der Aufsicht von Dr. Mathew Ball, P.Geo., entnommen und an Activation Laboratories (Act-Labs) aus Kamloops (British Columbia) gesendet. Activation Laboratories ist ein unabhängiges kommerzielles Labor, das gemäß ISO 9001 zertifiziert und gemäß ISO 17025 akkreditiert ist. Die Goldanalysen wurden mittels der Brandprobenmethode unter Anwendung von 30-Gramm-Proben mit

10.11.2025 Seite 11/13

AA-Abschluss durchgeführt. Bei den ersten Goldanalyseergebnissen von über 30.000 Teilen Gold pro Milliarde wurden gravimetrische Brandprobenanalysen durchgeführt. Silber und andere Elemente wurden mittels ICP-OES unter Anwendung eines Königswasseraufschlusses ermittelt. Kupferwerte von über einem Prozent wurden mittels Peroxidfusion erneut analysiert. Ergebnisse über 100 Gramm Silber pro Tonne wurden mittels gravimetrischer Brandprobe unter Anwendung einer 30-Gramm-Probe im Rahmen einer Doppelprobe erneut auf die Erzgehaltkonzentrationen analysiert. Die Qualitätskontrolle wurde mittels Referenz- und Leerproben sichergestellt, die in Intervallen zur Probensequenz hinzugefügt wurden. Bei ausgewählten Proben werden Kontrollanalysen durchgeführt.

Das Unternehmen möchte klarstellen, dass seine Entscheidung, mit der Förderung von mineralisiertem Material von den Lagerstätten Golden Crown und Lexington zur Verarbeitung bei seiner Anlage beim Edelmetallprojekt Greenwood fortzufahren, nicht auf einer Machbarkeitsstudie (Feasibility Study) basiert. Das Unternehmen weist darauf hin, dass in solchen Fällen ein hohes Maß an Ungewissheit sowie ein höheres wirtschaftliches und technisches Ausfallrisiko bestehen.

Die technischen Informationen in dieser Pressemitteilung wurden von Dr. Mathew Ball, P.Geo., einer qualifizierten Person (Qualified Person) gemäß National Instrument 43-101 und Chief Operating Officer des Unternehmens, genehmigt.

Für weitere Details konsultieren Sie bitte den jüngsten technischen Bericht (Technical Report) gemäß National Instrument 43-101 auf der Website des Unternehmens unter www.goldendawnminerals.com.

Für das Board of Directors: Golden Dawn Minerals Inc.

Wolf Wiese President & CEO

Weitere Informationen erhalten Sie über:

Corporate Communications (PR-Abteilung) 604-221-8936 allinfo@goldendawnminerals.com

Diese Pressemitteilung wurde vom Management erstellt, welches auch die volle Verantwortung für den Inhalt übernimmt. Die TSX Venture Exchange und deren Regulierungsorgane (in den Statuten der TSX Venture Exchange als Regulation Services Provider bezeichnet) übernehmen keinerlei Verantwortung für die Angemessenheit oder Genauigkeit dieser Meldung. Dieses Dokument enthält bestimmte zukunftsgerichtete Aussagen, die bekannte und unbekannte Risiken, Verzögerungen und Ungewissheiten in sich bergen, welche nicht im Einflussbereich des Unternehmens liegen und dazu führen können, dass sich tatsächliche Ergebnisse, Leistungen oder Erfolge des Unternehmens erheblich von den Ergebnissen, Leistungen oder Erfolgen unterscheiden, die in diesen zukunftsgerichteten Aussagen zum Ausdruck gebracht wurden. Wir bemühen uns um das Safe-Harbour-Zertifikat.

Die Ausgangssprache (in der Regel Englisch), in der der Originaltext veröffentlicht wird, ist die offizielle, autorisierte und rechtsgültige Version. Diese Übersetzung wird zur besseren Verständigung mitgeliefert. Die deutschsprachige Fassung kann gekürzt oder zusammengefasst sein. Es wird keine Verantwortung oder Haftung: für den Inhalt, für die Richtigkeit, der Angemessenheit oder der Genauigkeit dieser Übersetzung übernommen. Aus Sicht des Übersetzers stellt die Meldung keine Kauf- oder Verkaufsempfehlung dar! Bitte beachten Sie die englische Originalmeldung auf www.sedar.com, www.sec.gov, www.asx.com.au oder auf der Firmenwebsite!

Dieser Artikel stammt von Rohstoff-Welt.de

Die URL für diesen Artikel lautet:

https://www.rohstoff-welt.de/news/64800--Golden-Dawn-Minerals~-Ergebnisse-von-33-Bohrloechern-die-2017-im-Konzessionsgebiet-Golden-Crown-abgeschl

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!

10.11.2025 Seite 12/13

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.

10.11.2025 Seite 13/13