Osisko Mining Inc. Windfall Infill and Expansion Drilling Continues to Intersect High-Grade in Lynx

05.04.2023 | GlobeNewswire

TORONTO, April 05, 2023 - Osisko Mining Inc. (OSK:TSX. "Osisko" or the "Corporation") is pleased to provide new analytical results from the ongoing drill program at its 100% owned Windfall gold project located in the Abitibi greenstone belt, Urban Township, Eeyou Istchee James Bay, Qu?bec.

The targeted feasibility study surface drilling campaign was completed at the end of September 2022. In the past 6 months, over 55,000 metres additional have been drilled by 9 underground rigs focused on expansion and infill work in the Lynx segment of the deposit.

Significant new analytical results are presented below and include 81 intercepts from 45 drill holes and 3 wedges. The infill intercepts are all located inside the defined mineral resource estimate ("MRE") blocks as described in Osisko's feasibility study on Windfall (see FS Technical Report (as defined herein), a copy of which is available on SEDAR under Osisko's issuer profile), and have targeted upgrading inferred mineral resources to measured or inferred mineral resources, as applicable. The expansion intercepts are all located outside the MRE blocks, and either expand resource wireframes or are located in a defined zone or corridor not yet correlated to a specific wireframe.

Select expansion intercepts extending wireframes include: 12.4 g/t Au over 6.6 metres in WST-22-1296, a 100-metre down plunge extension of Lynx Main wireframe 3388 and 20.5 g/t Au over 2.1 metres in WST-22-1294, a 60-metre down plunge extension of the same wireframe; 286 g/t Au over 2.1 metres in WST-22-1218, a 30-metre extension below Triple Lynx wireframe 3188; 120 g/t Au over 2.1 metres in WST-22-1218, a 40-metre extension above Triple Lynx wireframe 3162; 29.6 g/t Au over 8.4 metres from hole WST-22-1182A-W1, a 20-metre extension below Triple Lynx wireframe 3172; 69.7 g/t Au over 2.1 metres, a 60-meter extension east of Triple Lynx wireframe 3121.

Osisko Chief Executive Officer John Burzynski commented: "While Windfall has commenced the permitting process with the recent submission of our Environmental Impact Assessment (see Osisko news release dated March 29, 2023 and entitled "Osisko submits Windfall environmental impact assessment"), we have continued our work to improve our understanding of the continuity and extent of the MRE with drills on infill and expansion holes in the deposit. Today's expansion results add good potential to increase the scale of defined areas of mineralization, and have also served well to identify additional areas to target new extensions of Windfall. The infill holes' grade and lengths remain consistent with respect to the currently defined resources and continue to confirm our high-grade models."

Select infill high-grade intercepts include: 204 g/t Au over 2.0 metres in WST-22-1249A, 101 g/t Au over 3.8 metres in WST-22-1286; 42.9 g/t Au over 7.9 metres in WST-22-1232; 106 g/t Au over 2.1 metres in WST-22-1116; 99.3 g/t Au over 2.0 metres in WST-22-1182A and 34.0 g/t Au over 5.0 metres in WST-22-1107. Maps showing hole locations and full analytical results are available at www.osiskomining.com.

Maps: Long-Section_Expan-20230405_EN, Long-Sections_lens3388-20230405_EN, PR_EN_20230405_Surface, PR_EN_20230405_UG, Long-Section-_Infill-20230405_EN

Expansion Drilling

Hole No. From (m) To (m) Interval (m) Au (g/t) uncut Au (g/t) Corridor Corr

23.12.2025 Seite 1/8

	1324.5	1326.6 2.1	39.8	25.6	LX4_3466	Lynx 4
including	1325.0	1325.5 0.5	160	100		
OSK-W-22-2605-W7		1211.0 2.5	6.90		LX4_3453	Lynx 4
OSK-W-22-2653	484.0	486.0 2.0	38.7		LSW	Lynx SW
including	484.0	485.0 1.0	77.0			
	526.4	535.3 8.9	7.74		LSW	Lynx SW
including	526.4	527.0 0.6	81.1			
OSK-W-22-2654	106.7	108.9 2.2	4.53		BCT	Bobcat
including	106.7	107.0 0.3	20.5			
	142.8	145.3 2.5	60.2	32.6	BCT_2360	Bobcat
including	144.5	145.3 0.8	187	100		
OSK-W-22-2655	252.8	255.0 2.2	28.0	15.0	BCT	Bobcat
including	254.3	254.6 0.3	196	100		
OSK-W-22-2657	638.1	640.1 2.0	3.70		LSW_3508	•
OSK-W-22-2663	104.0	106.0 2.0	12.7		BCT	Bobcat
including	104.0	105.0 1.0	24.7			
WST-22-1072B	593.4	597.5 4.1	6.13		TLX	Triple Lynx
	601.0	603.4 2.4	21.2		TLX	Triple Lynx
including	602.0	602.8 0.8	61.5			
WST-22-1073	224.3	226.5 2.2	8.93		LHW_3216	S Lynx HW
including	224.8	225.2 0.4	47.7			
WST-22-1074	223.1	225.1 2.0	4.97		LHW_3216	S Lynx HW
including	223.5	224.1 0.6	16.3			
WST-22-1082	256.3	261.4 5.1	4.39		TLX_3167	Triple Lynx
including	260.8	261.4 0.6	18.9			
	293.0	297.2 4.2	6.37		TLX	Triple Lynx
including	293.0	293.6 0.6	20.4			
	384.0	386.4 2.4	4.42		LX4_3450	Lynx 4
including	385.1	385.6 0.5	20.2			
WST-22-1092	318.0	320.3 2.3	4.63		LX4	Lynx 4
including	320.0	320.3 0.3	28.8			
WST-22-1093A	562.5	567.2 4.7	6.29		TLX_3172	Triple Lynx
including	562.5	563.0 0.5	30.4	50.0		
WST-22-1107	609.5	614.7 5.2	71.1	53.9	TLX	Triple Lynx
including	609.5	610.1 0.6	195	100		
WST-22-1116	263.8	268.0 4.2	12.4		TLX	Triple Lynx
including	263.8	265.0 1.2	37.7			
	272.6	276.8 4.2	5.55		TLX_3180	Triple Lynx
including	272.6	272.9 0.3	35.2			
WST-22-1127	192.3	199.1 6.8	6.19		TLX_3168	Triple Lynx
including	198.0	199.1 1.1	15.4	04.0		_
WST-22-1128A	151.5	153.8 2.3	48.3	34.3	LXM_3339	Lynx
including	152.7	153.4 0.7	146	100		
WST-22-1146	211.6	214.0 2.4	10.0		LHW_3216	S Lynx HW
including	212.6	213.0 0.4	59.7			
WST-22-1156	145.1	147.8 2.7	31.9		LXM_3339	Lynx
including	145.7	146.5 0.8	72.8		TLV	Triple I
WST-22-1182A	480.1	482.1 2.0	23.5		TLX	Triple Lynx
in aludin e	597.2	600.0 2.8	3.58		TLX	Triple Lynx
including	597.2	597.6 0.4	16.7		TLX	Triple Lucy
	672.4	674.8 2.4	4.30		ILA	Triple Lynx

23.12.2025 Seite 2/8

WST-22-1182A-W1	490.7	493.0	2.3	7.50		TLX	Triple Lynx
including	491.8	492.5 562.2	0.7	23.4	29.2	TI V 0470	- · · ·
including	553.8 557.4	558.1	0.4	29.6 105	29.2 100	TLX_3172	Triple Lynx
WST-22-1218	234.0	236.1	2.1	286	19.1	TI V 2400	Triple Lypy
including	235.8	236.1	0.3	1970	100	1LA_3100	Triple Lynx
morading	248.0	250.1	2.1	120	14.7	TI Y 3162	Triple Lynx
including	249.5	249.8	0.3	835	100	1LA_5102	Triple Lyrix
WST-22-1220	195.8	200.0	4.2	12.3	.00	TLX	Triple Lynx
WST-22-1221	281.0	283.0	2.0	12.9		TLX_3158	Triple Lynx
including	281.8	282.4	0.6	34.0		12/_0100	The Lynx
3	306.9	308.9	2.0	3.58		TLX	Triple Lynx
WST-22-1232	334.1	337.5	3.4	8.01		TLX	Triple Lynx
including	334.1	334.6	0.5	37.3		/ (inpio Lyint
Ŭ	419.4	422.3	2.9	13.1		TLX 3162	Triple Lynx
including	419.9	420.2	0.3	91.9			
_	427.1	429.3	2.2	3.76		TLX 3140	Triple Lynx
including	427.9	428.3	0.4	10.2			1 - 7
WST-22-1255	200.6	202.7	2.1	3.75		TLX_3131	Triple Lynx
WST-22-1270A	305.8	308.0	2.2	12.3		TLX	Triple Lynx
including	305.8	306.1	0.3	72.6			. ,
WST-22-1273	354.0	358.6	4.6	10.6		TLX_3158	Triple Lynx
including	357.6	358.6	1.0	43.3			. ,
	487.8	490.2	2.4	16.0		TLX	Triple Lynx
	511.0	513.4	2.4	16.5		TLX_3172	Triple Lynx
including	512.3	512.7	0.4	88.2			
	522.3	524.4	2.1	5.45		TLX_3172	Triple Lynx
including	523.5	523.9	0.4	13.2			
WST-22-1286	147.6	149.6	2.0	7.55		TLX_3121	Triple Lynx
	163.5	166.9	3.4	34.8		TLX_3121	Triple Lynx
including	165.6	166.0	0.4	75.5			
WST-22-1287	128.3	130.5		7.92		LXM	Lynx
including	128.8	129.5		24.8			
	131.2	133.2		171	56.1	LXM	Lynx
including	132.6	133.2		483	100		
WST-22-1294	59.0	61.1	2.1	20.5		LXM_3388	Lynx
including	60.1	60.7	0.6	65.9			
WST-22-1296	65.0	71.6	6.6	12.4		LXM_3388	Lynx
including	67.5	67.9	0.4	99.9			
WST-23-1373	161.5	163.5	2.0	28.0		TLX	Triple Lynx
including	162.8	163.5	0.7	67.1	47.0		
Const. Program	184.5	186.6	2.1	69.7	47.2	TLX_3121	Triple Lynx
including	185.4	186.2	0.8	159	100		

Notes: True widths are estimated at 55 - 80% of the reported core length interval. See "Quality Control and Reporting Protocols" below., BCT = Bob Cat, LHW = Lynx Hangingwall, LSW = Lynx South West, LXM = Lynx Main, LX4 = Lynx 4 and TLX = Triple Lynx.

Infill Drilling

Hole No. From (m) To (m) Interval (m) Au (g/t) Au (g/t) Zone Corridor

23.12.2025 Seite 3/8

OSK-W-22-2670		183.8 2.0	12.2		F11_6001 F-11
including	181.8	182.3 0.5	28.5		
WST-22-1107	513.1	518.1 5.0	34.0	28.2	TLX_3172 Triple Lynx
including	515.5	516.2 0.7	115	100	
and	517.7	518.1 0.4	147	100	
WST-22-1116	402.3	404.4 2.1	106	37.2	TLX_3162 Triple Lynx
including	402.3	402.9 0.6	339	100	
	447.3	452.4 5.1	5.04		TLX_3172 Triple Lynx
WST-22-1123	172.8	175.2 2.4	28.9		TLX_3153 Triple Lynx
including	174.1	174.5 0.4	94.5		
WST-22-1125	287.2	289.6 2.4	10.5		TLX_3166 Triple Lynx
WST-22-1163A	194.8	196.9 2.1	7.27		TLX_3131 Triple Lynx
including	194.8	195.2 0.4	30.4		
	349.0	351.0 2.0	8.32		TLX_3191 Triple Lynx
including	350.3	350.7 0.4	40.9		
WST-22-1178	141.2	145.2 4.0	17.3	15.2	LXM_3392 Lynx
including	141.9	142.3 0.4	121	100	
WST-22-1182A	526.8	528.8 2.0	99.3	54.9	TLX_3172 Triple Lynx
including	527.6	528.4 0.8	211	100	
WST-22-1183	269.0	275.6 6.6	3.94		TLX_3166 Triple Lynx
including	275.3	275.6 0.3	14.2		
to all altern	386.0	388.0 2.0	4.84		LX4_3450 Lynx 4
including	386.8	387.1 0.3	15.0		
in alcording as	401.2	404.6 3.4	4.39		LX4_3450 Lynx 4
including WST-22-1191	401.2	401.6 0.4	9.61		TIV 0400 T. I. I
	272.0 272.4	274.0 2.0 272.8 0.4	15.4 67.2		TLX_3166 Triple Lynx
including WST-22-1193A	155.0	157.0 2.0	41.1	35.3	TIV 0400 Table I
including	155.3	155.9 0.6	120	100	TLX_3169 Triple Lynx
WST-22-1203	396.4	398.6 2.2	3.99	100	LV4 2450 Lymy 4
including	397.2	397.8 0.6	14.4		LX4_3450 Lynx 4
WST-22-1232	290.7	298.6 7.9	42.9	30.8	TIV 2150 Triple Lypy
including	296.5	298 1.5	150	100	TLX_3158 Triple Lynx
moraamg	388.0	392.0 4.0	12.7	100	TLX_3119 Triple Lynx
WST-22-1249A		294.0 2.0	7.95		TLX_3166 Triple Lynx
including	292.7	293.2 0.5	31.4		TEX_5100 Triple Lyrix
e.a.ag	296.1	298.1 2.0	204	22.3	TLX_3166 Triple Lynx
including	296.6	297.0 0.4	1010	100	TEX_0100 Thiple Lynx
WST-22-1253	216.5	218.5 2.0	12.0		TLX_3188 Triple Lynx
including	217.1	217.5 0.4	57.7		12/1_0100 111pio 2)1ii/
WST-22-1254	216.4	218.6 2.2	20.6		TLX_3188 Triple Lynx
WST-22-1255	216.0	218.6 2.6	6.08		TLX_3188 Triple Lynx
WST-22-1256	479.0	483.4 4.4	21.6	15.0	TLX_3172 Triple Lynx
including	482.4	482.7 0.3	197	100	· _ · · · · · · · · · · · · · · · ·
WST-22-1286	101.7	105.5 3.8	101	37.9	TLX_3161 Triple Lynx
including	102.5	103.0 0.5	577	100	
WST-22-1288	214.0	216.0 2.0	77.8	41.3	TLX_3188 Triple Lynx
including	214.9	215.4 0.5	241	100	_ 1 7
	222.5	224.6 2.1	10.6		TLX_3188 Triple Lynx
including	223.4	223.8 0.4	21.5		

23.12.2025 Seite 4/8

WST-22-1293	205.0	207.0 2.0	19.8	TLX_3131 Triple Lynx
including	205.0	205.6 0.6	65.5	_ , ,

Notes: True widths are estimated at 55 - 80% of the reported core length interval. See "Quality Control and Reporting Protocols" below., F11 = F-11 Zone, LXM = Lynx Main, LX4 = Lynx 4 and TLX = Triple Lynx.

Drill hole location

Hole Number	Azimuth (?)	Dip (?)	Length (m)	UTM E	UTM N	Elevation	Section
OSK-W-22-2420-W1	` '	-59	1494		5435556		3825
OSK-W-22-2605-W7	112	-55	1401	453551	5435669	408	4025
OSK-W-22-2653	146	-56	585	452958	5435198	415	3275
OSK-W-22-2654	141	-54	600	453009	5435274	416	3350
OSK-W-22-2655	146	-60	675	452976	5435277	411	3325
OSK-W-22-2657	144	-54	741	452986	5435343	411	3350
OSK-W-22-2663	325	-53	327	453109	5435182	407	3400
OSK-W-22-2670	148	-46	207	452572	5436049	405	3350
WST-22-1072B	152	-75	700	453646	5435347	-189	3950
WST-22-1073	155	19	255	453701	5435376	-195	4000
WST-22-1074	142	28	258	453702	5435376	-195	4000
WST-22-1082	166	-23	517	453444	5435276	-99	3725
WST-22-1092	147	-7	349	453510	5435330	-126	3825
WST-22-1093A	102	-68	632	453647	5435348	-189	3950
WST-22-1107	124	-74	741	453647	5435348	-189	3950
WST-22-1116	169	-72	532	453645	5435347	-189	3950
WST-22-1123	185	-24	202	453541	5435311	-172	3825
WST-22-1125	187	1	370	453443	5435276	-98	3725
WST-22-1127	200	-76	223	453179	5435128	173	3425
WST-22-1128A	182	-72	222	453179	5435128	173	3425
WST-22-1146	153	25	268	453701	5435376	-195	4000
WST-22-1156	182	-69	183	453179	5435127	172	3425
WST-22-1163A	178	-49	382	453541	5435311	-173	3825
WST-22-1178	125	35	159	453703	5435377	-194	4000
WST-22-1182A	112	-76	761	453647	5435347	-189	3950
WST-22-1182A-W1	112	-76	811	453647	5435347	-189	3950
WST-22-1183	161	-7	420	453279	5435248	-145	3575
WST-22-1191	165	-6	418	453279	5435248	-145	3575
WST-22-1193A	170	-15	190	453342	5435282	-187	3650
WST-22-1203	170	-10	423	453278	5435248	-145	3575
WST-22-1218	162	-49	279	453542	5435311	-173	3825
WST-22-1220	106	-57	346	453759	5435407	-208	4075
WST-22-1221	114	-56	343	453759	5435407	-208	4075
WST-22-1232	169	-67	589	453757	5435406	-208	4075
WST-22-1249A	186	-3	385	453442	5435275	-98	3725
WST-22-1253	165	-38	252	453542	5435311	-172	3825
WST-22-1254	169	-36	253	453541	5435311	-172	3825
WST-22-1255	162	-32	241	453542	5435311	-172	3825
WST-22-1256	165	-70	586	453757	5435406	-208	4075
WST-22-1270A	162	-18	418	453278	5435248	-145	3575
WST-22-1273	138	-68	559	453758	5435406	-208	4075
WST-22-1286	152	-55	184	453646	5435347	-188	3950
WST-22-1287	134	-52	253	453758	5435406	-207	4075

23.12.2025 Seite 5/8

WST-22-1288	158	-42	255	453543 5435312 -173	3825
WST-22-1293	172	-47	391	453543 5435311 -173	3825
WST-22-1294	173	-22	160	453756 5435405 -207	4075
WST-22-1296	136	-18	196	453758 5435406 -207	4075
WST-23-1373	138	-59	250	453646 5435347 -188	3950

Bobcat

Mineralization most commonly occurs in gold-bearing quartz-pyrite veins controlled by northeast trending faults and shears and to a lesser extent in minor crustiform quartz-tourmaline-ankerite-pyrite veins and pyrite replacement zones and stockwork. Mineralization is hosted in sheared mafic volcanics, rhyolites near faults, or at the contact with felsic porphyritic intrusions.

Lvnx Zone

Mineralization occurs as grey to translucent quartz-carbonate-pyrite-tourmaline veins and pyrite replacement zones and stockworks. Vein-type mineralization is associated with haloes of pervasive sericite-pyrite? silica alteration and contain sulphides (predominantly pyrite with minor amounts of chalcopyrite, sphalerite, galena, arsenopyrite, and pyrrhotite) and local visible gold. Replacement mineralization is associated with strong pervasive silica-sericite-ankerite? tourmaline alteration and contains disseminated pyrite from trace to 80% with local visible gold. Pyrite stockworks can form envelopes that reach several tens of metres thick. Fuchsite alteration is common and is spatially constrained to near the gabbros. Mineralization occurs at or near geological contacts between felsic porphyritic or fragmental intrusions and the host rhyolites or gabbros and locally can be hosted along the gabbro-rhyolite contact.

F-Zones

Mineralization is hosted in sheared andesites with carbonate replacement or quartz veining and occurs as quartz? ankerite veinlets or as replacement type in shear zones and is characterised by trace to 10% pyrite with local visible gold. Alteration is dominated by sericite-fuchsite-tourmaline-pyrite.

Qualified Person

The scientific and technical content of this news release has been reviewed, prepared, and approved by Ms. Isabelle Roy, P.Geo. (OGQ 535), Director of Technical Services for Osisko's Windfall gold project, who is a "qualified person" as defined by National Instrument 43-101 - Standards of Disclosure for Mineral Projects ("NI 43-101").

Quality Control and Reporting Protocols

True width determination is estimated at 55-80% of the reported core length interval for the zone. Assays are

uncut except where indicated. Intercepts occur within geological confines of major zones but have not been correlated to individual vein domains at this time. Reported intervals include minimum weighted averages of 3.5 g/t Au diluted over core lengths of at least 2.0 metres. NQ core assays were obtained by either 1-kilogram screen fire assay or standard 50-gram fire-assaying-AA finish or gravimetric finish at (i) ALS Laboratories in Val d'Or, Qu?bec, Vancouver, British Colombia, Lima, Peru or Vientiane, Laos (ii) Bureau Veritas in Timmins, Ontario. The 1-kilogram screen assay method is selected by the geologist when samples contain coarse gold or present a higher percentage of pyrite than surrounding intervals. Selected samples are also analyzed for multi-elements, including silver, using a Four Acid Digestion-ICP-MS method at ALS Laboratories. Drill program design, Quality Assurance/Quality Control ("QA/QC") and interpretation of results is performed by qualified persons employing a QA/QC program consistent with NI 43-101 and industry best practices. Standards and blanks are included with every 20 samples for QA/QC purposes by the Corporation as well as the lab. Approximately 5% of sample pulps are sent to secondary laboratories for check assay.

About the Windfall Gold Deposit

The Windfall gold deposit is located between Val-d'Or and Chibougamau in the Abitibi region of Qu?bec, Canada. The mineral resource estimate on Windfall (with an effective date of June 7, 2022) (the "Windfall Resource Estimate") and the mineral reserve estimate on Windfall (with an effective date of November 25, 2022) (the "Windfall Reserve Estimate") are described in the technical report entitled "Feasibility Study for the Windfall Project, Eeyou Istchee James Bay, Qu?bec, Canada" (the "FS Technical Report") and dated January 10, 2023 (with an effective date of November 25, 2022). The Windfall Resource Estimate, assuming a cut-off grade of 3.50 g/t Au, comprises 811,000 tonnes at 11.4 g/t Au (297,000 ounces) in the measured mineral resource category, 10,250,000 tonnes at 11.4 g/t Au (3,754,000 ounces) in the indicated mineral resource category and 12,287,000 tonnes at 8.4 g/t Au (3,337,000 ounces) in the inferred mineral resource

23.12.2025 Seite 6/8

category. The Windfall Reserve Estimate, assuming 3.5 g/t operating, 2.5 g/t incremental, and 1.7 g/t development cut-off grade, comprises 12,183,000 tonnes at 8.06 g/t Au (3,159,000 ounces) in the probable mineral reserves category. The key assumptions, parameters, limitations and methods used in the Feasibility Study for Windfall, including the related Windfall Resource Estimate and Windfall Reserve Estimate, are described in a technical report (the "FS Technical Report"), which was prepared in accordance with NI 43-101. The FS Technical Report is available on SEDAR (www.sedar.com) under Osisko's issuer profile. The Windfall gold deposit is currently one of the highest-grade resource-stage gold projects in Canada and has world-class scale. Mineralization occurs in three principal areas: Lynx, Main, and Underdog. Mineralization is generally comprised of sub-vertical lenses following intrusive porphyry contacts plunging to the northeast. The resources are defined from surface to a depth of 1,600 metres, including the Triple 8 (TP8) zone. The reserves are defined from surface to a depth of 1,100 metres. The deposit remains open along strike and at depth. Mineralization has been identified at surface in some areas and as deep as 2,625 metres in others with significant potential to extend mineralization down-plunge and at depth.

About Osisko Mining Inc.

Osisko is a mineral exploration company focused on the acquisition, exploration, and development of precious metal resource properties in Canada. Osisko holds a 100% interest in the high-grade Windfall gold deposit located between Val-d'Or and Chibougamau in Qu?bec and holds a 100% undivided interest in a large area of claims in the surrounding the Urban Barry area and nearby Qu?villon area (over 2,400 square kilometres).

Cautionary Note Regarding Forward-Looking Information

This news release contains "forward-looking information" within the meaning of the applicable Canadian securities legislation that is based on expectations, estimates, projections and interpretations as at the date of this news release. Any statement that involves predictions, expectations, interpretations, beliefs, plans, projections, objectives, assumptions, future events or performance (often, but not always, using phrases such as "expects", or "does not expect", "is expected", "interpreted", "management's view", "anticipates" or "does not anticipate", "plans", "budget", "scheduled", "forecasts", "estimates", "potential", "feasibility", "believes" or "intends" or variations of such words and phrases or stating that certain actions, events or results "may", "could", "would", "might" or "will" be taken to occur or be achieved) are not statements of historical fact and may be forward-looking information and are intended to identify forward-looking information. This news release contains the forward-looking information pertaining to, among other things: the Windfall gold deposit being one of the highest-grade resource-stage gold projects in Canada and having world-class scale; the significance of the infill and expansion drilling results reported in this news release; the significance of the new analytical results reported in this news release; the timing and ability, if at all, for Osisko to obtain permits; the results of the Environmental Impact Assessment; our ability, if at all, to upgrade an inferred mineral resource to a measured mineral resource or indicated mineral resource category; future exploration activities, including drilling, at the Windfall gold deposit; the deposit remaining open along strike and at depth; the plunge potential of the Lynx and Underdog zones; expected grade and resource growth; cut-off grade and sensitivity analysis; and the significance of historic exploration activities and results. Although the forward-looking information contained in this news release is based upon what management believes, or believed at the time, to be reasonable assumptions, Osisko cannot assure shareholders and prospective purchasers of securities of the Corporation that actual results will be consistent with such forward-looking information, as there may be other factors that cause results not to be as anticipated, estimated or intended, and neither Osisko nor any other person assumes responsibility for the accuracy and completeness of any such forward-looking information. Such factors include, among others, risks relating to the ability of exploration activities (including drill results) to accurately predict mineralization; errors in management's geological modelling; the ability of Osisko to complete further exploration activities, including drilling; property and royalty interests in the Windfall gold deposit; the ability of the Corporation to obtain required approvals; the results of exploration activities; risks relating to mining activities; the global economic climate; metal prices; dilution; environmental risks; and community and non-governmental actions. Osisko does not undertake, and assumes no obligation, to update or revise any such forward-looking statements or forward-looking information contained herein to reflect new events or circumstances, except as may be required by law.

CONTACT INFORMATION:

Osisko Mining Inc.
John Burzynski, Chief Executive Officer
Telephone (416) 363-8653

23.12.2025 Seite 7/8

Dieser Artikel stammt von Rohstoff-Welt.de
Die URL für diesen Artikel lautet:
https://www.rohstoff-welt.de/news/439990--Osisko-Mining-Inc.-Windfall-Infill-and-Expansion-Drilling-Continues-to-Intersect-High-Grade-in-Lynx.html

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.

23.12.2025 Seite 8/8