

Newcrest Mining Limited - Quarterly Exploration Report - 31 December 2022

25.01.2023 | [Newsfile](#)

Q2 results strengthen growth potential across expanding exploration portfolio

At Brucejack, drilling continues to enhance the resource growth potential at the Valley of the Kings (VOK) deposit and the surrounding area, with intercepts expanding the strike extent at the 1080 HBx Zone and demonstrating continuity at Golden Marmot which are located outside the current Premium published resource.

- At 1080 HBx Zone, drilling to expand the VOK deposit continues to confirm the continuity of higher grade mineralisation at depth and to the south, with 6 of 20 holes returning intervals in excess of 5 grams per tonne gold. Mineralisation now extends over 145m of strike length and remains open. Results include, VU-4624, 10.5m @ 917g/t Au from 235.5m, including 1m @ 9,618g/t Au from 244m, which is the highest grade returned from the 1080 Hbx Zone to date. In addition, VU-4626 returned 11m @ 269g/t Au from 173.5m, including 1m @ 2,954g/t Au from 174.5m.
- At Golden Marmot, located ~3.5km north of the VOK, assays were received for a further 22 holes. Holes were drilled to infill the main zone demonstrating continuity of the higher grade over an area 100m wide, 200m long, and 300m high with 5 of 22 holes returning intervals in excess of 5 grams per tonne gold. Results include, SU-893, 18m @ 12g/t Au from 211.5m, including 1m @ 184g/t Au from 227m. In addition, SU-899 returned 1m @ 8,000g/t Au from 164.67m, which is the highest grade returned from Golden Marmot to date.

At Red Chris, drilling at East Ridge continues to confirm continuity and expand the footprint of higher grade mineralisation and strengthen the potential for resource growth.

- At East Ridge, drilling continues to expand the vertical extent of the mineralisation within the Exploration Target area previously reported on 21 July 2022. Drilling has returned the deepest significant higher grade intercept at the project to date with RC857 intersecting 266m @ 0.43g/t Au & 0.57% Cu from 1,534m, including 34m @ 1.1g/t Au & 1.6% Cu from 1,706m. These results have extended the higher grade mineralisation, which remains open at depth, by a further 100m to a depth of more than 700m vertical.

At Haverton, drilling continues to reinforce the potential for incremental resource growth with higher grade extensions to the mineralisation in the Northern Breccia and the Eastern Breccia.

- In the Eastern Breccia, results outside the current Mineral Resource are HAD134, 82m @ 2.1g/t Au & 0.25% Cu from 1,508m, including 30m @ 2.4g/t Au & 0.19% Cu from 1,540m, HAD163, 86m @ 1.2g/t Au & 0.04% Cu from 1,415m, including 26m @ 1.9g/t Au & 0.09% Cu from 1,452m and HAD167, 78m @ 1.9g/t Au & 0.19% Cu from 1,516m.
- At the Northern Breccia, drill results include HAD098W7, 84m @ 3.2g/t Au & 0.14% Cu from 1,008m. Drilling is ongoing to define the extents of higher-grade zones of mineralisation.

At the new Spring Peak low sulfidation epithermal project in Nevada, initial exploration drilling has confirmed the presence of higher grade mineralisation in the Disco Zone with SP22-013 returning 34.72m @ 2.7g/t Au from 256.12m, including 2.01m @ 10g/t Au from 262.46m, 2.38m @ 16g/t Au from 275.26m and including 0.34m @ 70g/t Au from 275.96m. Mineralisation on the Disco Zone structure remains open at depth and along strike.

Melbourne, January 24, 2023 - Newcrest (ASX: NCM) (TSX: NCM) (PNGX: NCM) Interim Chief Executive

Officer, Sherry Duhe, said, "We are delighted by our ongoing exploration success at Brucejack, Red Chris and Haverton, with the latest set of drilling results continuing to support the potential for significant resource growth across each of these key projects. At Brucejack, we delivered some outstanding results with mineralisation remaining open across the Valley of the Kings deposit and Golden Marmot area, further supporting this exciting opportunity which is being aggressively pursued by our exploration team.

"Positive initial results at the Spring Peak Project in Nevada indicate further growth potential and we were also very pleased to add the Mount Coolon project into our pipeline during the quarter, further enhancing our impressive global exploration portfolio," said Ms Duhe.

Brucejack, British Columbia, Canada⁽¹⁾

The Brucejack Property hosts the Valley of the Kings (VOK) high-grade gold deposit. The VOK is characterised by multiple occurrences of higher grade mineralisation over selected intervals hosted within broader zones of stockwork and vein arrays. Growth activities are focused on both resource expansion within the existing mine area, as well as brownfields exploration activities within 4km of the mine area.

Resource expansion drilling during the quarter was focused on targets in the 1080 HBx Zone and Bridge Zone North. A total of 7,665m in 33 drill holes was completed using 2 underground diamond drill rigs. Assay results were received for three drill fans in the 1080 HBx Zone. Assay results were also received from a further 22 drill holes at Golden Marmot, which was part of the surface brownfields diamond drilling completed last quarter. All other assays are pending.

At 1080 HBx Zone, assays were received for 20 drill holes (three drill fans). 16 drill holes intersected gold mineralisation, with 6 of the 20 drill holes intersecting higher grade mineralisation, in excess of 5 grams per tonne, including the highest grade intersection returned to date. Drill holes at 1080 HBx are collared within the current Pretium published resource for the initial 90 to 135 meters, depending on the orientation of the drill hole, and only results outside the resource are reported. The drill program was designed to follow up on the extensions of the high-grade gold mineralisation intersected in the 1080 East drill program (previously reported).

Results demonstrate the continuity of higher grade gold mineralisation hosted in the HBx Domain, sub-parallel to Domain 20, which is currently being mined in the VOK. Drill fans were spaced at 15 meters horizontally in order to rapidly advance this new zone. Assays received to date cover an area of 105m x 300m x 250m, and the HBx Domain has now been defined over a strike length of 145m. Drilling is currently in progress to test the HBx Domain further along strike.

Results for the reporting period include:

- VU-4624
 - 10.5m @ 917g/t Au from 235.5m
 - including 1m @ 9,618g/t Au from 244m
- VU-4626
 - 11m @ 269g/t Au from 173.5m
 - including 1m @ 2,954g/t Au from 174.5m

At Golden Marmot, assays were received for 22 drill holes. 11 drill holes intersected gold mineralisation, with 5 of 22 drill holes intersecting higher grade gold mineralisation, in excess of 5 grams per tonne, and include the highest grade returned to date.

The focus for the calendar year 2022 drill program at Golden Marmot was to infill the main zone identified in 2021 and began to step out from known mineralisation. Results to date have confirmed the presence of gold mineralisation within the main zone with dimensions of 100m wide, 200m long, and 300m high. Mineralisation encountered at Golden Marmot displays many of the salient geological features that characterise hanging wall domains in the VOK deposit immediately to the south. Future exploration drilling will focus on continuing to test the extent of the mineralisation which remains open to the south and at depth.

Results for the reporting period include:

- SU-893
 - 18m @ 12g/t Au from 211.5m
 - including 1m @ 184g/t Au from 227m
- SU-896
 - 1.5m @ 113g/t Au from 141m
 - 9m @ 10g/t Au from 160.5m
- SU-899
 - 1m @ 8,000g/t Au from 164.67m
- SU-903
 - 1m @ 1,740g/t Au from 414m

Approximately 54,000m of resource expansion drilling and 35,000m of brownfield exploration drilling targeting mineralisation definition and continuity are planned during calendar year 2023 with three drill rigs operating underground and four drill rigs operating on surface during the summer months.

Refer to Appendix 1 for additional information, and the drill hole data table for all results reported during the period.

Figure 1. Plan view map of the Brucejack Property, spanning the 4km gossanous trend from Golden Marmot and Hanging Glacier in the northwest to Bridge Zone in the southeast.

To view an enhanced version of Figure 1, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_003full.jpg

Figure 2. Long section view (looking west) of the Brucejack Property. Refer to figure 1 for the location of the cross section. Viewing window is +/- 150 meters.

To view an enhanced version of Figure 2, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_004full.jpg

Figure 3. Plan view of the 1080 Level in the VOK, showing Domain 13, Domain 20, and the newly defined HBX Domain. The previously published Pretium resource is outlined in red.

To view an enhanced version of Figure 3, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_005full.jpg

Red Chris, British Columbia, Canada⁽²⁾

Red Chris is a joint venture between Newcrest (70%) and [Imperial Metals Corp.](#) (30%) and is operated by Newcrest.

The Brownfield Exploration program is focused on the discovery of additional zones of higher-grade mineralisation within the Red Chris porphyry corridor, including targets outside of Newcrest's Mineral Resource estimate. During the quarter, there were up to seven diamond drill rigs in operation. A further 13,854m of drilling has been completed during the quarter from 18 drill holes, with all drill holes intersecting mineralisation. This contributed to a total of 300,154m of drilling from 291 drill holes since Newcrest acquired its interest in the joint venture in August 2019.

At East Ridge, located adjacent to the East Zone, drilling is ongoing with 71 holes completed and 5 in progress. Assays were received from 12 holes during the quarter. The follow up drilling is being completed

on a nominal 100m x 100m grid to determine the footprint, characterise the mineralisation and to demonstrate the extent of continuity of the higher-grade mineralisation. Drilling to date has tested a corridor 900m long, 250m wide and to a vertical extent of 1,000m where zones of higher grade mineralisation have been identified.

East Ridge is outside of Newcrest's Mineral Resource estimate. Diamond drilling continues to define the extent and continuity of this higher grade mineralisation. A further 25 diamond drill holes at minimum are planned to test and close out the target mineralisation. This program is expected to be completed by the second quarter of calendar year 2023.

Results for the reporting period include:

- RC843
 - 202m @ 0.47g/t Au & 0.64% Cu from 810m
 - including 78m @ 0.83g/t Au & 1.0% Cu from 864m
 - including 32m @ 1.2g/t Au & 1.3% Cu from 908m
- RC848
 - 248m @ 0.33g/t Au & 0.46% Cu from 1,320m
 - including 52m @ 0.84g/t Au & 0.82% Cu from 1,492m
 - including 34m @ 1.0g/t Au & 0.86% Cu from 1,510m
- RC857
 - 266m @ 0.43g/t Au & 0.57% Cu from 1,534m
 - including 56m @ 0.83g/t Au & 1.2% Cu from 1,694m
 - including 34m @ 1.1g/t Au & 1.6% Cu from 1,706m

Drilling continues to expand the vertical extent of the East Ridge mineralisation. The latest drilling results from holes RC848 and RC857 extend the higher grade mineralisation by a further 100m at depth to more than 700m vertical. The result from RC857 is the deepest significant higher grade intercept at the project to date. All holes remain open at depth.

These results demonstrate further support of the upside range of the Exploration Target defined in the June 2022 Quarterly Exploration Report dated 21 July 2022. The Exploration Target potential quantity and grade is conceptual in nature, there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Drilling within the Exploration Target area also continues to define the continuity of the higher grade mineralisation in hole RC843, located 100m west of RC808 (previously reported) and 700m below surface, making it one of the shallowest significant higher grade intercepts at East Ridge.

The East Ridge mineralised corridor contains higher grade (>0.8g/t Au and >0.8% Cu) in several smaller pods over an area 700m high, 400m long and 125m wide. Drilling to test the eastern extent of the mineralised corridor has returned some lower grades and intervals of unmineralised porphyry in several holes including RC851, RC854 and RC855 with follow up in progress.

Approximately 35,000m of growth-related drilling targeting mineralisation definition and continuity is planned for the second half of FY23 from four drill rigs.

Refer to Appendix 2 for additional information, and the drill hole data table for all results reported during the period.

Figure 4. Schematic plan view map of the Red Chris porphyry corridor spanning East Ridge, East Zone, Main Zone and Gully Zone showing significant Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report), 0.3g/t Au, 1g/t Au, 0.3% Cu and 1% Cu shell projections generated from a Leapfrog™ model.

To view an enhanced version of Figure 4, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_006full.jpg

Figure 5. Long section view (looking North West) of the Red Chris porphyry corridor showing drill hole locations, gold distribution and Exploration Target (previously released).

To view an enhanced version of Figure 5, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_007full.jpg

Havieron Project, Western Australia, Australia⁽³⁾

The Havieron Project is operated by Newcrest under a Joint Venture Agreement (JVA) with Greatland Gold Plc (Greatland). Newcrest is the manager and holds a 70% interest in the Havieron Project (Greatland holds a 30% interest). The JVA includes tolling principles reflecting the intention of the parties that, subject to a successful exploration program, Feasibility Study and a positive decision to mine, the resulting joint venture mineralised material will be processed at Telfer.

The Havieron Project is centred on a deep magnetic anomaly located 45km east of Telfer in the Paterson Province. The deposit is overlain by more than 420m of post mineral Permian cover. The Joint Venture commenced drilling during the June 2019 quarter and has completed 288,664m of drilling from 327 drill holes to date (excluding holes in progress, abandoned holes, or drill holes which have not been sampled).

Drilling activities in the quarter have produced a further 19,079m of drilling from 22 holes with up to 6 drill rigs operating during the quarter. This includes 4 infill drillholes within the current Eastern Breccia Inferred Resource which are not included in this report and 6 abandoned holes which failed to reach target depth. New assay results are reported from 12 drill holes (8 were assays pending from the previous quarter). Of the reported holes, 7 holes returned significant assay intercepts in excess of 50 gram metres gold (Au ppm x length m). Further infill drilling has commenced to support ongoing resource assessment of the lower South East Crescent zone.

Growth drilling targeting mineralisation definition and continuity continues to show potential for resource additions outside of the existing Indicated and Inferred Mineral Resource limits, including:

- Extensions of the Eastern Breccia incorporating definition of identified internal higher grade zones - assay results reported for 7 drill holes, 2 holes awaiting assays.
- Extensions to the Northern Breccia at depth between the current Northern Breccia Resource and Eastern Breccia Resource - assay results reported for 2 drill holes, 4 holes awaiting assays.
- Drilling to assess geophysical targets outside of the main Havieron system - 3 drill hole results reported and 2 holes awaiting assays from step-out drilling to the northwest and southeast of the Havieron system.

The Eastern Breccia is developed below the 4,100RL with a footprint of over 500m in strike, up to 200m in width, and over 250m in vertical extent. Within this zone, multiple northwest trending internal higher-grade (>1 g/t Au) sulphide dominated domains are observed. The Eastern Breccia remains open at depth and to the northwest and southeast.

Results include:

- HAD134
 - 82m @ 2.1g/t Au & 0.25% Cu from 1,508m
 - including 30m @ 2.4g/t Au & 0.19% Cu from 1,540m
- HAD152W4
 - 86m @ 0.88g/t Au & 0.05% Cu from 2,056m
 - 10m @ 4.0g/t Au & 0.04% Cu from 2,120m
- HAD152W5
 - 62m @ 0.92g/t Au & 0.40% Cu from 1,607m
- HAD163
 - 86m @ 1.2g/t Au & 0.04% Cu from 1,415m
 - including 26m @ 1.9g/t Au & 0.09% Cu from 1,452m

- HAD163W1
 - 171.1m @ 0.68g/t Au & 0.04% Cu from 1,458m.
 - including 32m @ 1.5g/t Au & 0.09% Cu from 1,492m
- HAD167
 - 78m @ 1.9g/t Au & 0.19% Cu from 1,516m

At the Northern Breccia results include:

- HAD098W7
 - 84m @ 3.2g/t Au & 0.14% Cu from 1,008m

Drilling to test geophysical targets outside of the known Havieron mineralised system, including evaluating the Havieron dolerite at multiple intervals north and south of the Havieron mineralised envelope, revealed no significant intercepts from three drill holes (HAD165, MEC001 and NOR002). Two additional holes are awaiting assays.

The initial campaign of growth programs, in the March 2023 quarter, will progress assessment of growth targets, and ongoing resource infill of the lower South East Crescent zone, with drill programs reducing to three drill rigs over the Western Australian wet season.

Refer to Appendix 3 for additional information and drill hole data table for all results reported during the period.

Figure 6. 3D Plan view schematic showing the spatial association of the South East Crescent, Northern Breccia, North West Pod and Eastern Breccia in relation to the current exploration growth target areas and the Mineral Resource extents. Also highlighted are selected previously reported^{^^} and new (highlighted in yellow - refer to Figure 6) intercepts >100 gram metres (Au ppm x length) that have been intersected outside of the Inferred Mineral Resource. Intercepts are projected to the 4600RL.

To view an enhanced version of Figure 6, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_008full.jpg

Figure 7. 3D oblique view of the Havieron system viewed from the south-east, showing the position of high-grade intercepts (previously^{^^} reported and new (highlighted in yellow - refer to Figure 7)) and mineralised zones >100 gram metres (Au ppm x length) that have been intersected outside of the Mineral Resource extents. Further higher-grade mineralisation and assay results continue to support incremental expansion of the Northern Breccia and Southeast Crescent, as well as extensions to the Eastern Breccia (refer to Figure 5 for spatial relationship of drill holes and zones).

To view an enhanced version of Figure 7, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_009full.jpg

Figure 8. Plan view schematic of a horizontal slice at 3900mRL through the Crescent Sulphide Zone and Breccia-hosted Zones, showing the extents of the 0.5 and 1.0 g/t Au Leapfrog™ grade shells with highlighted newly reported intercepts for this period. This diagram highlights >50 gram metres intersections drilled during the period, refer to inset diagram for relationship to all Havieron drilling.

To view an enhanced version of Figure 8, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_010full.jpg

Western USA

Spring Peak Project, Nevada

In August 2022, Newcrest entered into four separate definitive option and earn-in agreements with Headwater Gold Inc. (Headwater Gold) and purchased a 9.9% equity interest in the company (previously reported). Newcrest has the option to acquire up to a 75% interest individually in each of the Agate Point, Midas North and Spring Peak Projects in Nevada and the Mahogany Project in Oregon.

The Spring Peak project is located approximately 35km southwest of Hawthorn, Nevada in the Aurora mining district. During the quarter Headwater Gold completed an RC and diamond drilling program at Spring Peak designed to follow up results from their 2021 exploration program and continued target definition work including mapping on other targets. A total of 3,170m was drilled in 10 holes across the project area including both RC pre-collar with diamond tails and three RC only holes. All holes encountered epithermal veining and alteration with the thickest intercepts located in four drill holes completed on a single section at the Disco Zone offsetting the intersection previously reported by Headwater (on 22 November 2021) in RC drill hole SP21-03 which returned 38.1m @ 1g/t Au. One RC pre-collar was drilled off section but was not completed with a diamond tail due to the arrival of winter weather conditions.

Assay results have been returned for the diamond tail for SP22-13 with all other assay results from the project pending.

Results include:

- SP22-013
 - 34.72m @ 2.7g/t Au from 256.12m
 - including 2.01m @ 10g/t Au from 262.46m
 - including 2.38m @ 16g/t Au from 275.26m
 - and including 0.34m @ 70g/t Au from 275.96m

SP22-13 is the deepest and highest grade intercept reported to date at Spring Peak. The mineralised structure is drill constrained to this section only and remains open at depth and along strike. A follow up drill program is being planned for the upcoming field season.

Figure 9. Plan view of the Spring Peak project illustrating the location of drill hole SP22-13, previous drilling, and the drill constrained cross section. Coordinates are NAD83 UTM Zone 11 north.

To view an enhanced version of Figure 9, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_011full.jpg

Figure 10. Geological and geophysical cross section of the Disco Zone with drill results from SP22-13 and SP21-07, the structure is open both down dip and along strike. A drill program to further test the zone is currently being planned. Section view is to the southwest.

To view an enhanced version of Figure 10, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_012full.jpg

Appaloosa Project, Nevada

In September 2022, Newcrest entered into an option and earn-in agreement (previously reported) with [Gunpoint Exploration Ltd.](#) (Gunpoint) to acquire up to 75% of the Appaloosa property located in Nevada, USA (with an option to acquire the remaining 25% of Appaloosa post the earn-in period). Appaloosa is an underexplored mineralised structural zone situated within Gunpoint's Talapoosa gold-silver project. Newcrest is currently performing target definition work including mapping, geophysics and rock chip and channel

sampling with assay results pending. In January 2023, Newcrest provided notice to Gunpoint to enter into the Option Phase of the option and earn-in agreement at Appaloosa.

Australia

Wilki Project, Western Australia

The Wilki Project is an exploration farm-in and joint venture with Antipa Minerals Limited (Antipa). The project area covers a strategic landholding of ~2,200km² surrounding the Telfer operation and is adjacent to the Havieron Project. Newcrest entered into this exploration farm-in and joint venture agreement with Antipa in March 2020. Newcrest currently also has a 9.9% shareholding in Antipa.

As previously highlighted, Newcrest has elected to proceed to the next stage (Stage 1) of the farm-in agreement following completion of the initial exploration expenditure commitment (A\$6 million). Newcrest has the potential to earn a 51% joint venture interest in the Wilki Project through expenditure of a further A\$10 million by March 2025 during Stage 1. As of 1 July 2022, Newcrest is the manager and operator of the Wilki Project.

Field activities were suspended for the summer period and will resume in the first half of calendar year 2023, with planned soil sampling and follow up drilling to be completed, subject to successful attainment of heritage clearances.

Juri Joint Venture, Western Australia

The Juri Joint Venture is a farm-in and joint venture agreement with Greatland with respect to the Black Hills and Paterson Range East projects, located within the Paterson Province approximately 50km from the Telfer operation and in proximity to the Havieron Project. The joint venture covers an area of approximately 248km². Newcrest currently has a 51% interest in the Juri Joint Venture, and the Joint Venture is currently managed by Greatland. Under the terms of the agreement, Newcrest has the potential to earn an additional 24% joint venture interest through expenditure of a further A\$17 million by October 2024.

Drill programs completed at A9 and Tama in the September 2022 quarter returned no significant new results. Target generation and project review activities are underway during seasonal suspension of field programs.

Mount Coolon Project, Queensland

In October 2022, Newcrest entered into a farm-in agreement with GBM Resources Ltd (GBM) in relation to the Mount Coolon Project to advance gold exploration in the Drummond Basin in Queensland. The agreement provides the potential for Newcrest to acquire up to a 75% interest in the Mount Coolon Project tenements by spending A\$25M and completing a series of exploration milestones in a 3 stage farm-in over six years.

Newcrest considers the Drummond Basin to be highly prospective for discovery of new higher grade gold resources related to known epithermal gold deposits within the Mount Coolon Project area. The project is undergoing establishment activities and initial targeting has identified a number of high priority targets below and along strike to previously identified gold-bearing low-sulphidation epithermal veining. On ground activities are expected to commence in the first half of calendar year 2023.

Northern Andes

Gamora Project, Ecuador

Planning is in progress for the second phase of scout drilling at the Gamora Project, located in southeast Ecuador. This work is being conducted by Newcrest as the operator under an earn-in agreement with Lundin

Gold Inc. (Lundin Gold) pursuant to which Newcrest can earn up to a 50% interest in eight exploration concessions. The concession area covers strategic landholdings to the north and south of Lundin Gold's Fruta del Norte mining operation. The next phase of drilling at Gamora will focus on testing priority copper-gold porphyry targets starting in the March 2023 quarter.

Appendix 1

Brucejack (100% Newcrest): JORC Table 1 Section 1: Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	Core samples are obtained from core drilling. HQ diameter diamond core was sampled at 1.5m intervals except where visible gold was shortened to 1.0 or 0.5m. Core drilling was advanced with HQ diameter coring configuration.
Drilling techniques	Core from select inclined drill holes are oriented on 3m runs using ACTIII). At the end of each run, the bottom of hole position is marked to the whole drill core run length with a bottom of hole reference line. Core recovery is systematically recorded from the commencement of drilling against driller's depth blocks in each core tray with data recorded in the core log. Log data provided the depth, interval of core recovered, and interval of core recovered.
Drill sample recovery	Core recoveries were typically 100%, with isolated zones of lower recovery. Geological logging recorded qualitative descriptions of lithology, alteration and structure (for all core drilled - 7,665m).
Logging	Geotechnical measurements were recorded including Rock Quality Index, solid core recovery and qualitative rock strength measurements.
Sub-sampling techniques and sample preparation	All geological and geotechnical logging was conducted at the Brucejack Mine.
	Digital data logging was captured, validated and stored in an Acquaintance database which replaces the previous Geospark database.
	All drill cores were photographed, prior to sampling the core. Sampling, sample preparation and quality control protocols are conducted on all cores sampled.
	Whole core HQ samples. Whole core samples were collected in plastic sample bags and grouped into shipping bins for dispatch to the laboratory. Core lengths were typically 1.5m, and weights typically varied from 11 to 15kg, with approximately 12.5 Kg. Sample sizes are considered appropriate for the analysis.
	All drill core samples were freighted by road to the laboratory via haul truck.
	Sample preparation was conducted at the independent ISO 9001 certified Global preparation laboratories including Terrace, Kamloops, Yellowknife and Yellowknife. Samples were crushed to 90% passing 2 mm, and split to obtain up to 100g (using LM2) to produce a pulped product with the minimum standard of 95%.
	Duplicate sample data are available from crush and pulp samples. The results show an acceptable level of variability for the material sampled.

Criteria

Commentary

Assaying of drill core samples was conducted at ALS in North Vancouver, BC, Canada. Major elements were determined by ICP-OES and minor elements using a 4-acid digestion followed by ICP-OES determination. Gold and silver were determined by 50g fire assay with atomic absorption finish (minimum detection limit 10 ppm) and 50g gravimetric overlimit method at 18 ppm.

Sampling and assaying quality control procedures consisted of including certified reference materials (CRMs), coarse residue and pulp duplicates with each batch (at least one of each).

Assays of quality control samples were compared with reference samples and verified as acceptable prior to formal use of data from analysed samples.

Laboratory quality duplicates including replicates and preparation duplicates were checked and verified against the database and assessed.

Quality of assay data and laboratory tests

Prepared pulp splits for mineralized samples were sent to MS Analytical for lab check work by comparable Au and ICP methods to ensure agreement. A total of 10 samples were prepared for 20 samples, from 5 of the Golden Marmot holes. A total of 10 samples were prepared for 20 samples, from 5 of the Golden Marmot holes. Mineralized samples for VOK drilling was sent for secondary lab check work by MS Analytical for 1080 East level drilling. Comparisons are acceptable.

Analysis of the available quality control sample assay results indicates that the quality of the assay data is acceptable. The precision and precision has been achieved. The database contains no analytical data that has been manipulated.

The assaying techniques and quality control protocols used are considered acceptable and are used for reporting exploration drilling results.

Sampling intervals defined by the geologist are electronically assigned to the core sampling. Corresponding sample numbers matching pre-labeled sample numbers are assigned to the core interval.

All sampling and assay information were stored in a secure Acquire database.

Sample submission forms providing the sample identification number and sample type are submitted to the laboratory. Assay results from the laboratory with corresponding sample numbers are stored in the Acquire database.

Verification of sampling and assaying

Assessment of reported significant assay intervals was verified by core and review of high resolution core photography. The verification is completed by company personnel and the Competent Person/Qualified Person.

No adjustments are made to assay data, and no twinned holes have been used to estimate mineralisation at various angles.

There are no currently known drilling, sampling, recovery, or other factors that would affect the accuracy or reliability of the data.

All collar coordinates are provided in the North American Datum (NAD83).

1080 HBx: Underground drill collar locations are marked up by the geologist. The back site and foresight are provided to enable alignment; Drills are aligned on the markup and sights, and a TN-14 collar Gyro is used to confirm orientation.

Golden Marmot: Surface drill collar locations are marked with a station point provided to enable alignment. Collar locations are picked up using a TN-14 collar Gyro is used to confirm orientation prior to drilling.

Topographic control is established from 2014 Lidar.

1080 HBx: Drill hole spacing is 15m laterally. Assays have been re-assessed and are considered sufficient for estimation of a Mineral Resource.

Location of data points

Golden Marmot: Drill hole spacing was at 30m horizontal spacing which is insufficient for estimation of a Mineral Resource.

Data spacing and distribution

No sample compositing is applied to samples.

Criteria

Orientation of data in relation to geological structure

Commentary

Drill holes at 1080 HBx are oriented towards 205 degrees in order to target WNW-ESE oriented mineralization domains. Drilling at 1080 HBx is sub-parallel to Domain 20, hosted in the Eastern Promises Porphyry.

Sample security

Drill holes at Golden Marmot are oriented towards either 145 degrees or 235 degrees, perpendicular to the mineralization domains which broadly strike to the west. The security of samples is ensured by tracking samples from drill rig to the Brucejack Core Facility, using high resolution core photography and whole core sampling was undertaken.

Sample numbers are obtained from pre-made sample tag books, filed and recorded in the database. Sample tags are inserted into labelled plastic bags and the bagged sample secured with a zip tie.

Audits or reviews

Samples were grouped in sequence into rice bags, then placed into boxes for transport offsite. Samples are transported by road to the preparation facility.

Verification of sample numbers and identification is conducted by the laboratory using sample receipt advice issued to Newcrest.

Details of all sample shipments are recorded in a shipment tracking system prior to leaving the Brucejack site. Shipping dates, Hole IDs, sample numbers and sample descriptions are recorded with the dispatch of samples to the laboratory analytical system. The laboratory uses a workorder template of methods and duplicates by which to process samples. Any discrepancies noted during sample login at the laboratory are resolved.

Due to the limited duration of the program, no external audits or reviews were conducted.

Internal verification and audit of Newcrest exploration procedures are conducted by the laboratory.

Section 2: Reporting of Exploration Results

Criteria

Mineral tenement and land tenure status

Commentary

Brucejack comprises 346 mineral tenures including four mineral leases and one mining lease held by Newcrest Mining Limited.

Exploration done by other parties

All obligations with respect to legislative requirements are in place and standing.

Granduc, Esso, Newhawk, Lacana Mining Corp., and Newcrest Mining Limited between 1960 and 2010.

Geology

Pretium Resources acquired the Brucejack Property in 2009 and sold it to the Kings in 2011. North Block and 1080 level were first drilled in 1988 and 2011.

Drill hole information

The Brucejack Project is located in the Stikine terrane, approximately 100 km west of the town of Stewart. Early Jurassic sedimentary and volcanic rocks are the host rocks for mineralisation. A pervasive quartz-pyrite-sericite alteration is associated with mineralisation. Gold mineralisation at Brucejack consists of quartz veins, and veinlets.

As provided.

Data aggregation methods

Significant assay intercepts are reported as length-weighted averages with a minimum length of 7.5m, with less than 7.5m of consecutive assay intervals greater than 100g/t Au. Intervals below a cutoff of 1.0 g/t Au are not included in the cuts and no cuts are applied to intercept calculations.

Relationship between mineralisation widths and intercept lengths

Significant assay intervals reported represent apparent widths and are used to confirm the geological model and true width of significant mineralisation.

Diagrams

As provided.

Balanced reporting

This is the fourth release of Exploration Results for the Brucejack Project. Exploration has been reported by Newcrest since April 2022.

Exploration drilling programs are ongoing and further releases will be made by Newcrest.

Criteria	Commentary
Other substantive exploration data	Nil.
Further work	Drilling is currently underway at 1080 HBx to complete. Further drilling is also being planned for the Bridge Zone, East
Drillhole data ⁽¹⁾	

Brucejack, British Columbia, Canada

Reporting Criteria: Intervals are reported as length-weighted averages using a cut-off of 1.0 g/t Au and a minimum length of 7.5m, with less than 7.5m of consecutive internal dilution. Also reported are intervals greater than 100g/t Au. Intervals below a cutoff of 1.0g/t Au were not reported as significant results. Gold grades are reported to two significant figures. Samples are from core drilling which is HQ in diameter. Core is photographed and logged by the geology team before being whole core sampled and sent for assay. Each assay batch is submitted with duplicates and standards to monitor laboratory quality.

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cut off
VU-4623	DD	426844	6257849	1089	321.2	205	-38.1	70.5	103	32.5	2.1	1.0
								139.5	156	16.5	2.5	1.0
								228	259.5	31.5	1.0	1.0
								301.5	321.2	19.7	3.3	1.0
VU-4624	DD	426844	6257849	1089	372.1	204.8	-30.2	121.5	166.5	45	1.4	1.0
								187.1	195	7.9	1.0	1.0
								235.5	246	10.5	917	1.0
							incl.	244	245	1	9,618	100
								268.5	281.7	13.2	1.7	1.0
VU-4625	DD	426844	6257849	1089	348.2	205.1	-21.7	75.5	88.5	13	2.5	1.0
								304.5	318	13.5	1.1	1.0
								327	346.5	19.5	1.1	1.0
VU-4626	DD	426844	6257849	1089	327.2	205.27	-13.2	46.5	57	10.5	3.7	1.0
								173.5	184.5	11	269	1.0
							incl.	174.5	175.5	1	2,954	100
								306	326.5	20.5	1.8	1.0
VU-4627	DD	426844	6257849	1089	434.8	205.1	-3.7	37.5	55.5	18	2.3	1.0
								297	348	51	1.3	1.0
								369	376.5	7.5	1.2	1.0
VU-4628	DD	426844	6257849	1089	322	204.99	5	223	232.5	9.5	2.4	1.0
VU-4629	DD	426844	6257849	1089	290.8	205.13	15				No significant assays	
VU-4630	DD	426844	6257849	1089	230.8	205.1	24.5				No significant assays	
VU-4666	DD	426723	6257839	1088	453.2	205.03	-37.2	102	114	12	1.1	1.0
								213	264	51	2.3	1.0
								274.5	327	52.5	1.4	1.0
								342	373.5	31.5	1.1	1.0
								393	412.5	19.5	1.6	1.0
VU-4667	DD	426723	6257839	1088	432	205.3	-30.2	97.5	106.5	9	1.4	1.0
								205.5	224	18.5	2.0	1.0
							incl.	238	249	11	12	1.0
								238	239	1	113	100
								331.5	408	76.5	3.2	1.0
VU-4668	DD	426723	6257839	1088	429.2	205.27	-24	114	123	9	2.4	1.0
								136.5	172.5	36	1.1	1.0
								181.5	193.5	12	1.9	1.0
								226.5	234	7.5	1.3	1.0
VU-4669	DD	426723	6257839	1089	405.1	205.1	-17.2	384	385.5	1.5	135	100
								433.5	442.5	9	1.1	1.0
VU-4670	DD	426723	6257839	1089	447.9	205.2	-9.2	90	145.5	55.5	1.9	1.0
								292.5	300	7.5	2.3	1.0
								328.5	358.5	30	1.1	1.0

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cut off
VU-4671	DD	426723	6257840	1089	342.1	205.5	0.1	187.5	208.5	21	3.1	1.0
								280.5	291	10.5	1.1	1.0
VU-4672	DD	426723	6257840	1090	243.3	204.8	8.8	78	117	39	3.3	1.0
								132	142.38	10.38	1.5	1.0
								190.5	207	16.5	1.0	1.0
VU-4673	DD	426723	6257839	1090	215.7	205	17.9				No significant assays	
VU-4674	DD	426723	6257839	1091	191.9	205.1	26.4				Assays pending	
VU-4675	DD	426723	6257839	1091	173.7	205.1	33.5				Assays pending	
VU-4676	DD	426723	6257840	1091	158.8	205	40.1				Assays pending	
VU-4771	DD	426844	6257849	1089	244.6	194.01	20.33	52.5	60	7.5	5.1	1.0
VU-4772	DD	426844	6257849	1089	308.9	194.14	10.64				No significant results	
VU-4773	DD	426844	6257849	1089	330.3	193.98	0.73	57.75	68	10.25	1.5	1.0
								260.3	261.3	1	570	100
VU-4774	DD	426844	6257849	1089	342.3	193.99	-9.16	63	84	21	1.7	1.0
								165	178.5	13.5	1.7	1.0
								204	211.5	7.5	2.6	1.0
								276	300.18	24.18	2.1	1.0
VU-4775	DD	426844	6257849	1089	356.9	194.49	-16.96				Assays pending	
VU-4776	DD	426844	6257849	1089	396	194	-24.5				Assays pending	
VU-4777	DD	426844	6257849	1089	450	194.1	-35				Assays pending	
SU-885	DD	425828	6261612	1780	442.4	21.57	-49.63				No significant assays	
SU-892	DD	425627.66	6261868.67	1723.06	367.9	145.29	-70				No significant assays	
SU-893	DD	425541.77	6261892.98	1710.32	442.8	146.06	-44.5	75	84	9	5.5	1.0
								145.5	153	7.5	3.3	1.0
								165	187.5	22.5	1.4	1.0
								211.5	229.5	18	12	1.0
							incl.	227	228	1	184	100
								293	294	1	280	100
SU-894	DD	425542.23	6261892.42	1709.43	547.6	145.17	-54.9				No significant assays	
SU-895	DD	425447.53	6261451.76	1577.7	494	55.11	-45				No significant assays	
SU-896	DD	425447.12	6261451.44	1577.34	666	55.37	-59.7	141	142.5	1.5	113	100
								160.5	169.5	9	10	1.0
SU-897	DD	425754.39	6261642.83	1764.69	310.4	324.82	-65.36	111	118.5	7.5	1.1	1.0
SU-898	DD	425611.19	6261796.49	1726.57	351.4	146.16	-44.1	197.85	198.85	1	472	100
SU-899	DD	425611.14	6261796.48	1727.23	448.2	144.98	-52.6	61.5	72	10.5	1.5	1.0
								164.67	165.67	1	8,000	100
SU-900	DD	425610.89	6261795.65	1726.58	388.4	145.13	-60.1				No significant assays	
SU-901	DD	425972.36	6261429.95	1748.36	676.8	23.61	-75.33				No significant assays	
SU-902	DD	425569.26	6261694.9	1704.85	311.2	324.31	-55				No significant assays	
SU-903	DD	425569.74	6261693.69	1704.23	469.9	323.62	-64.8	414	415	1	1740	100
								456	466.5	10.5	1.2	1.0
SU-904	DD	425827.78	6261613.57	1781.96	796.8	21.11	-65.69	238.5	250.5	12	1.3	1.0
SU-905	DD	425289.51	6261556.51	1540.91	19.1	53.87	-45				Hole abandoned at 19.1m	
SU-905A	DD	425356.09	6261510.79	1564.67	605.1	53.87	-45				Assays pending	
SU-906	DD	425289.35	6261556.27	1540.81	800.4	56.46	-59.53				Assays pending	
SU-907	DD	425696.87	6261727.13	1754.38	186.2	323.56	-50	102	109.5	7.5	2.3	1.0
								132	180	48	2.6	1.0
SU-908	DD	425697.96	6261725.58	1754.55	271.4	324.34	-79.8	109.5	127.5	18	1.0	1.0
SU-910	DD	425453.33	6262036.02	1634.72	653.5	55.02	-50.1				Assays pending	
SU-911	DD	425450.39	6262038.13	1635.51	511.6	79.54	-49.9				Assays pending	
SU-912	DD	425321.17	6261829.28	1639.79	604.3	148.31	-50.35				No significant assays	
SU-913	DD	425222.98	6261822.75	1591.9	600.3	145.05	-49.98				Assays pending	
SU-914	DD	425419.46	6261916.25	1660.35	544.4	144.7	-50	361.5	370.5	9	2.8	1.0
SU-915	DD	425419.12	6261916.5	1660.41	557.74	144.51	-60.2				No significant assays	
SU-916	DD	425462.34	6261903.42	1678.81	466.3	146.46	-45.89				No significant assays	

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cut off
SU-917	DD	425462.49	6261905.24	1678.21	487.5	145.34	-51.7	123	134	11	2.3	1.0
								142.5	154.5	12	1.1	1.0
								267	274.5	7.5	2.9	1.0
SU-918	DD	425462.41	6261905.31	1678.88	514.8	144.74	-60.1				Assays pending	
00SU-919	DD	425502.43	6261901.92	1694.57	550	145.1	-57.6				Assays pending	
SU-920	DD	425061.69	6261988.04	1497.51	402	339.01	-49.8				Assays pending	
SU-921	DD	425486.7	6261960.91	1665.65	538.3	143.65	-50.92				Assays pending	
SU-922	DD	425486.45	6261961.28	1665.49	596.6	143	-58				Assays pending	
SU-923	DD	425718.25	6261799.54	1753.76	249	325.25	-50.35				No significant assays	
SU-924	DD	425514.01	6262025.6	1633.65	521	145.74	-60.17				Assays pending	
SU-925	DD	425532.24	6261957.65	1675.4	445.9	145.13	-44.9				Assays pending	
SU-926	DD	425532.66	6261957.11	1674.56	566.6	144.92	-60.1				Assays pending	
SU-927	DD	425852.69	6261723.96	1768.94	558.3	336.44	-50				Assays pending	

drilling in progress, **partial intercept, assays pending. ^updated intercept ^^previously reported intercept

Figure 11. Cross section for drill fan 1080_37_ELAT17_41_L1 (location shown on Figure 3) showing all drill holes and significant intercepts. Due to window size (+/- 30m) and section orientation (270˚) holes may appear on multiple sections.

To view an enhanced version of Figure 11, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_013full.jpg

Figure 12. Cross section for drill fan 1080_37_ELAT17_41_L2 (location shown on Figure 3) showing all drill holes and significant intercepts. Due to window size (+/- 30m) and section orientation (270˚) holes may appear on multiple sections.

To view an enhanced version of Figure 12, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_014full.jpg

Figure 13. Cross section for drill fan 1080_37_WLAT18_34 (as shown on Figure 3) showing all drill holes and significant intercepts. Due to window size (+/- 30m) and section orientation (270˚) holes may appear on multiple sections.

To view an enhanced version of Figure 13, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_015full.jpg

Figure 14. Schematic plan view map of the Golden Marmot drilling showing the location of the drill fans and previous drilling.

To view an enhanced version of Figure 14, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_016full.jpg

Figure 15. Cross section for drill holes SU-902, SU-903, SU-914, SU-915, SU-916, SU-917 (as shown on

Figure 14) showing all significant intercepts. Due to window size (+/- 30m) and section orientation (060°); holes may appear on multiple sections.

To view an enhanced version of Figure 15, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_017full.jpg

Figure 16. Cross section for drill holes SU-893, SU-894, SU-898, SU-899, SU-900 (as shown on Figure 14) showing all significant intercepts. Due to window size (+/- 30m) and section orientation (060°); holes may appear on multiple sections.

To view an enhanced version of Figure 16, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_018full.jpg

Figure 17. Cross section for drill holes SU-892, SU-897, SU-907, SU-908 (as shown on Figure 14) showing all significant intercepts. Due to window size (+/- 30m) and section orientation (060°); holes may appear on multiple sections.

To view an enhanced version of Figure 17, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_019full.jpg

Figure 18. Cross section for drill holes SU-885, SU-895, SU-896, SU-904 (as shown on Figure 14) showing all significant intercepts. Due to window size (+/- 20m) and section orientation (060°); holes may appear on multiple sections.

To view an enhanced version of Figure 18, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_020full.jpg

Appendix 2

Red Chris (70% Newcrest): JORC Table 1 Section 1: Sampling Techniques and Data

Criteria

Commentary

Sampling techniques

Core samples are obtained from core drilling. HQ and NQ diameter 6m run. Core was cut using an automatic core-cutter and half core sequences were not sampled.

Core drilling was advanced with HQ3, HQ, NQ3 and NQ diameter

Drilling techniques

Core from inclined drill holes are oriented on 3, 4.5m or 6m runs using a Reflex ACTIII. At the end of each run, the bottom of hole position transferred to the whole drill core run length with a bottom of hole

Core recovery is systematically recorded from the commencement against driller's depth blocks in each core tray with data recorded in provided the depth, interval of core recovered, and interval of core

Drill sample recovery

Core recoveries were typically 100%, with isolated zones of lower

Criteria	<p>Commentary</p> <p>Geological logging recorded qualitative descriptions of lithology, all structure (for all core drilled - 13,854.0m in 18 holes - all holes intersect orientation of key geological features).</p> <p>Geotechnical measurements were recorded including Rock Quality solid core recovery and qualitative rock strength measurements.</p>
Logging	<p>Magnetic susceptibility measurements were recorded every metre.</p> <p>All geological and geotechnical logging was conducted at the Red Chris Mine.</p> <p>Digital data logging was captured, validated and stored in an acQuire database.</p> <p>All drill cores were photographed, prior to cutting and/or sampling them. Sampling, sample preparation and quality control protocols are consistent across all cores sampled.</p> <p>Core was cut and sampled at the Red Chris Mine core processing facility in plastic bags together with pre-numbered sample tags and grouped by laboratory. Sample weights typically varied from 5 to 10kg. Samples were cut to a standard size and style of mineralisation. Drill core samples were freighted by road to the Bureau Veritas Commodities Canada Ltd Laboratory, Vancouver (Bureau Veritas).</p>
Sub-sampling techniques and sample preparation	<p>Sample preparation was conducted at the independent ISO 9001 certified Bureau Veritas Commodities Canada Ltd Laboratory, Vancouver (Bureau Veritas). Samples were crushed to 95% passing 4.75 mm, and the split to obtain up to 1kg of sample (method LM2) to produce a pulped product with the minimum standard of 95%.</p> <p>Duplicate samples were collected from crush and pulp samples at an acceptable level of variability for the material sampled and style of preparation.</p> <p>Periodic size checks (1:20) for crush and pulp samples and sample weights were recorded in the acQuire database.</p> <p>Assaying of drill core samples was conducted at Bureau Veritas. Assays were conducted using a 4-acid digestion followed by ICP-AES/ICP-MS determination of major elements and gold was determined by 50g fire assay with ICP-ES finish (method FA350). Copper was determined by ICP-ES using a 4-acid digestion (method LM200). Zinc was determined by ICP-ES using a 4-acid digestion (method TC000) and mercury using aqua regia digestion followed by atomic absorption (method AQ200).</p> <p>Sampling and assaying quality control procedures consisted of including certified reference materials (CRMs), coarse residue and pulp duplicates with each batch (at least one of each).</p> <p>Assays of quality control samples were compared with reference standards and verified as acceptable prior to use of data from analysed batches.</p>
Quality of assay data and laboratory tests	<p>Laboratory quality control data, including laboratory standards, blank and duplicate samples are captured in the acQuire database and assessed for accuracy.</p> <p>Due to the limited extent of the drilling program to date, extended quality control programs have not been undertaken, whereby pulped samples will be submitted to an independent laboratory for analysis and extensive re-submission programs.</p> <p>Analysis of the available quality control sample assay results indicates that the quality control data is accurate and precision has been achieved and the database contains no anomalous data that has been manipulated.</p> <p>The assaying techniques and quality control protocols used are consistent with industry best practices and are used for reporting exploration drilling results.</p>

Criteria

Audits or reviews

Section 2: Reporting of Exploration Results

Criteria

Mineral tenement and land tenure status

Exploration done by other parties

Geology

Drill hole information

Data aggregation methods

Relationship between mineralisation widths and intercept lengths

Diagrams

Balanced reporting

Other substantive exploration data

Further work

Drillhole data⁽¹⁾

Red Chris Project, British Columbia, Canada

Reporting Criteria: Intercepts reported are downhole drill width (not true width) Au >0.1ppm (0.1g/t Au) and minimum 20m downhole width with maximum consecutive internal dilution of 10m. Also highlighted are high grade intervals of Au >0.5ppm (0.5g/t Au), Au >1ppm (1g/t Au), Au > 5ppm (5g/t Au), Au >10ppm (10g/t Au)

Commentary

Due to the limited duration of the program, no external audits or re

Internal verification and audit of Newcrest exploration procedures a

Commentary

Red Chris (including the GJ Property) comprises 204 joint venture between subsidiaries of Newcrest Mining. Newcrest Red Chris Mining Limited is the operator of acquisition of four early stage exploration properties f and Railway properties are expected to be added to t

Newcrest Red Chris Mining Limited and the Tahltan M Government, the Tahltan Band and Iskut First Nation Benefit and Co-Management Agreement (IBCA) cove

All obligations with respect to legislative requirements standing.

Conwest Exploration Limited, Great Plains Developm Texagulf Canada Ltd. (formerly Ecstall Mining Limite Corporation conducted exploration in the areas betwe

[Imperial Metals Corp.](#) acquired the project in 2007 an between 2007 and 2012.

The Red Chris Project is located in the Stikine terrane town of Dease Lake.

Late Triassic sedimentary and volcanic rocks of the S Jurassic (204−198 Ma) diorite to quartz monzoc

Gold and copper mineralisation at Red Chris consists porphyry-style mineralisation. Mineralisation is hosted main mineral assemblage contains well developed py as vein and breccia infill, and disseminations. The ma potassium feldspar-magnetite wall rock alteration.

As provided.

Significant assay intercepts are reported as (A) length or equal to 20m, with less than 10m of consecutive in exceeding 0.5g/t Au for greater than or equal to 10m, (C) length-weighted averages exceeding 1g/t Au for g consecutive internal dilution; (D) length-weighted ave with less than 10m of consecutive internal dilution; and greater than or equal to 10m, with less than 10m of c intercept calculations.

Significant assay intervals reported represent apparent to confirm the geological model and true width of sign As provided.

This is the twenty-first release of Exploration Results have been reported by Newcrest since January 2020.

Earlier reporting of exploration programs conducted b been reported. Exploration drilling programs are ongo subsequent Newcrest releases.

Nil.

Further drilling is planned to define the extents of the

and minimum 10m downhole width with maximum consecutive internal dilution of 10m. Gold and copper grades are reported to two significant figures. Samples are from core drilling which is HQ or NQ in diameter. Core is photographed and logged by the geology team before being cut. Half core HQ and NQ samples are prepared for assay and the remaining material is retained in the core farm for future reference. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Total depth (end of hole) is rounded to one decimal place for reporting purposes.

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cu (pct)	Cut off
RC833	DD#8239; 451611 6396091	1529	1022.1	149	-58	206	238	32	0.11	0.03	0.1		
					472	492	20	0.10	0.08	0.1			
					524	612	88	0.26	0.25	0.1			
					678	904	226	0.32	0.26	0.1			
					incl. 834	854	20	0.73	0.60	0.5			
					incl. 874	890	16	0.55	0.36	0.5			
					916	952	36	0.11	0.08	0.1			
					990	1022.1	32.1	0.13	0.05	0.1			
RC836	DD#8239; 453111 6396595	1442	2030.5	141	-65	680	714	34	0.16	0.01	0.1		
					900	930	30	0.24	0.04	0.1			
					1218	1260	42	0.31	0.34	0.1			
					1276	1410	134	0.17	0.43	0.1			
					1476	1538	62	0.13	0.28	0.1			
					1638	1702	64	0.11	0.15	0.1			
RC837	DD#8239; 451474 6395925	1529	926.4	149	-60	506	538	32	0.12	0.23	0.1		
					552	598	46	0.20	0.25	0.1			
					614	852	238	0.25	0.21	0.1			
					incl. 786	804	18	0.58	0.34	0.5			
					880	902	22	0.11	0.09	0.1			
RC838	DD#8239; 451473 6395924	1529	815.1	149	-50	462	618	156	0.21	0.38	0.1		
					638	684	46	0.28	0.29	0.1			
					714	766	52	0.11	0.08	0.1			
RC840	DD#8239; 453667 6396944	1371	1979.2	147	-62	1308	1448	140	0.33	0.47	0.1		
					incl. 1414	1446	32	0.59	0.59	0.5			
					1490	1556	66	0.65	0.60	0.1			
					incl. 1498	1540	42	0.78	0.70	0.5			
					1600	1652	52	0.17	0.26	0.1			
					1684	1802	118	0.18	0.25	0.1			
RC841	DD#8239; 453896 6397057	1098	1576.1	145	-48	510	536	26	0.64	0.06	0.1		
					incl. 520	534	14	0.99	0.07	0.5			
					582	640	58	0.28	0.08	0.1			
					incl. 590	614	24	0.51	0.13	0.5			
					1306	1348	42	0.10	0.19	0.1			
					1446	1474	28	0.15	0.23	0.1			
RC842	DD#8239; 453733 6396993	1363	1754.0	148	-56	1212	1277	65	0.13	0.39	0.1		
					1286	1356	70	0.48	0.66	0.1			
					incl. 1314	1350	36	0.62	0.70	0.5			
					1426	1690	264	0.18	0.39	0.1			
RC843	DD#8239; 453628 6396537	1403	1189.0	146	-53	14	38	24	0.13	0.01	0.1		
					810	1012	202	0.47	0.64	0.1			
					incl. 864	942	78	0.83	1.0	0.5			
					incl. 908	940	32	1.2	1.3	1			
					1064	1086	22	0.15	0.06	0.1			
RC845	DD#8239; 453628 6396536	1404	1085.5	145	-47	732	936	204	0.15	0.27	0.1		
RC846	DD#8239; 453831 6397026	1352	1790.3	145	-57	1314	1344	30	0.11	0.28	0.1		
					1594	1634	40	0.11	0.25	0.1			
					1648	1690	42	0.14	0.27	0.1			
RC848	DD#8239; 453481 6397024	1443	2006.3	145	-57	1246	1276	30	0.11	0.28	0.1		
					1320	1568	248	0.33	0.46	0.1			

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cu (pct)	Cut off
								incl. 1492	1544	52	0.84	0.82	0.5
								incl. 1510	1544	34	1.0	0.86	1
								1684	1900	216	0.19	0.33	0.1
								1914	1934	20	0.11	0.16	0.1
RC853	DD#8239; 453109 6396596 1442 1551.2	154	-63	522	574	52	0.16	0.02	0.1				
								942	1402	460	0.21	0.39	0.1
								incl. 1184	1194	10	0.64	0.95	0.5
RC854	DD#8239; 453896 6397057 1096 1663.5	144	-53	80	106	26	0.18	0.09	0.1				
								124	148	24	0.23	0.03	0.1
								550	678	128	0.22	0.05	0.1
								1014	1074	60	0.11	0.19	0.1
								1090	1110	20	0.14	0.27	0.1
								1452	1476	24	0.11	0.15	0.1
RC855	DD#8239; 454037 6397102 1122 1216.9	148	-40										No significant intercepts
RC856	DD#8239; 451306 6395596 1435 957.0	147	-59	60	90	30	0.14	0.08	0.1				
								110	178	68	0.13	0.11	0.1
								190	264	74	0.18	0.24	0.1
								276	304	28	0.17	0.21	0.1
								338	920	582	0.26	0.20	0.1
								incl. 558	584	26	0.64	0.36	0.5
								incl. 644	658	14	0.56	0.37	0.5
RC857	DD#8239; 453253 6397066 1471 2171.0	146	-57	1534	1800	266	0.43	0.57	0.1				
								incl. 1640	1656	16	0.62	0.69	0.5
								incl. 1694	1750	56	0.83	1.2	0.5
								incl. 1706	1740	34	1.1	1.6	1
								1950	2124	174	0.18	0.21	0.1
								incl. 2006	2018	12	0.60	0.59	0.5
RC858	DD#8239; 451297 6395477 1457 935.6	152	-59	16.16	54	37.84	0.16	0.01	0.1				
								82	102	20	0.19	0.02	0.1
								306	472	166	0.20	0.16	0.1
								incl. 406	416	10	0.51	0.32	0.5
								500	776	276	0.36	0.31	0.1
								incl. 700	768	68	0.65	0.70	0.5
								872	935.6	63.6	0.14	0.17	0.1
RC859	DD#8239; 453158 6397048 1471 2143.7	149	-58										Assays Pending#8239;
RC860	DD#8239; 454037 6397102 1122 1749.0	148	-60										Assays Pending#8239;
RC861	DD#8239; 453066 6396918 1466 1946.0	144	-57										Assays Pending#8239;
RC862	DD#8239; 453581 6396472 1409 938.0	149	-50	554	616	62	0.10	0.16	0.1				
RC863#	DD#8239; 453896 6397057 1098 1397.7	144	-61										Assays Pending#8239;
RC864#	DD#8239; 453404 6397179 1466 1161.4	146	-56										Assays Pending#8239;
RC865#	DD#8239; 453337 6397094 1467 1040.0	146	-58										Assays Pending#8239;
RC866#	DD#8239; 454038 6397103 1122 1095.0	148	-50										Assays Pending#8239;
RC867#	DD#8239; 453597 6397100 1424 740.7	148	-61										Assays Pending#8239;
RC868	DD#8239; 452311 6395713 1423 146.0	320	-50										Development Hole
RC869	DD#8239; 452297 6395677 1428 161.3	335	-70										Development Hole
RC870	DD#8239; 452345 6395674 1425 155.0	330	-57										Development Hole
RC871	DD#8239; 452385 6395672 1424 105.0	155	-75										Development Hole

drilling in progress, **partial intercept, assays pending. ^updated intercept ^^previously reported intercept

Figure 19. Schematic plan view map of East Ridge showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases). 0.3 g/t Au, 1 g/t Au, 0.3% Cu and 1% Cu shell projections generated from a Leapfrog™ model.

To view an enhanced version of Figure 19, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_021full.jpg

Figure 20. Schematic plan view map of Main Zone showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases). 0.3 g/t Au, 1 g/t Au, 0.3% Cu and 1% Cu shell projections generated from a Leapfrog™ model.

To view an enhanced version of Figure 20, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_022full.jpg

Figure 21. Schematic cross section of RC858 (Section Line 11N - as shown on Figure 20) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1 g/t Au, 0.5 g/t Au and 1 g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150˚) hole may appear on multiple sections.

To view an enhanced version of Figure 21, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_023full.jpg

Figure 22. Schematic cross section of RC856 (Section Line 12N - as shown on Figure 20) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1 g/t Au, 0.5 g/t Au and 1 g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150˚) hole may appear on multiple sections.

To view an enhanced version of Figure 22, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_024full.jpg

Figure 23. Schematic cross section of RC837 & RC838 (Section Line 15N - as shown on Figure 20) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1 g/t Au, 0.5 g/t Au and 1 g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150˚) hole may appear on multiple sections.

To view an enhanced version of Figure 23, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_025full.jpg

Figure 24. Schematic cross section of RC833 (Section Line 17N - as shown on Figure 20) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1 g/t Au, 0.5 g/t Au and 1 g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150˚) hole may appear on multiple sections.

To view an enhanced version of Figure 24, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_026full.jpg

Figure 25. Schematic cross section of RC853 (Section Line 32N - as shown on Figure 19) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1 g/t Au, 0.5 g/t Au and 1 g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150˚) hole may appear on multiple sections.

To view an enhanced version of Figure 25, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_027full.jpg

Figure 26. Schematic cross section of RC836 (Section Line 33N - as shown on Figure 19) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1 g/t Au, 0.5 g/t Au and 1 g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150˚) hole may appear on multiple sections.

To view an enhanced version of Figure 26, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_028full.jpg

Figure 27. Schematic cross section of RC862 & RC857 (Section Line 36N - as shown on Figure 19) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1 g/t Au, 0.5 g/t Au and 1 g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150˚) hole may appear on multiple sections.

To view an enhanced version of Figure 27, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_029full.jpg

Figure 28. Schematic cross section of RC843 & RC845 (Section Line 37N - as shown on Figure 19) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1 g/t Au, 0.5 g/t Au and 1 g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150˚) hole may appear on multiple sections.

To view an enhanced version of Figure 28, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_030full.jpg

Figure 29. Schematic cross section of RC848 (Section Line 38N - as shown on Figure 19) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1 g/t Au, 0.5 g/t Au and 1 g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150˚) hole may appear on multiple sections.

To view an enhanced version of Figure 29, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_031full.jpg

Figure 30. Schematic cross section of RC840 (Section Line 39N - as shown on Figure 19) showing Newcrest

and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1g/t, 0.5g/t Au and 1g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 30, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_032full.jpg

Figure 31. Schematic cross section of RC842 (Section Line 40N - as shown on Figure 19) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1g/t, 0.5g/t Au and 1g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 31, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_033full.jpg

Figure 32. Schematic cross section of RC846 (Section Line 41N - as shown on Figure 19) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1g/t, 0.5g/t Au and 1g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 32, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_034full.jpg

Figure 33. Schematic cross section of RC841 & RC854 (Section Line 42N - as shown on Figure 19) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 2 of this report, and in prior Newcrest exploration releases) 0.1g/t, 0.5g/t Au and 1g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 33, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_035full.jpg

Appendix 3

Havieron Project (Greatland Gold Plc - Joint Venture Agreement): JORC Table 1 Section 1: Sampling Techniques and Data

Criteria

Sampling techniques

Commentary

Core samples are obtained from core drilling in Proterozoic basement. Core was drilled on a 6m run. Core was cut using an automated core saw into 1m intervals with breaks for major geological changes. Sampling intervals sequences were not sampled.

Criteria	<p>Commentary</p> <p>Permian Paterson Formation cover sequence was drilled using mud rotary drilling. The cover sequence was observed to approximately 420m vertically below surface. Steel casings were run in the cover sequence and a pre-collar was run in the top of the target sequence.</p>
Drilling techniques	<p>Core drilling was advanced from the base of the cover sequence with a mud rotary configuration.</p>
Drill sample recovery	<p>Core from inclined drill holes is oriented on 3m and 6m runs using ACTIII). At the end of each run, the bottom of hole position is marked with a bottom of hole reference line. Core recovery is systematically recorded from the commencement of each run against driller's depth blocks in each core tray with data recorded in the core log. This provided the depth, interval of core recovered, and interval of core lost.</p>
Logging	<p>Core recoveries were typically 100%, with isolated zones of lower recovery.</p> <p>Cover sequence drilling by the mud-rotary drilling did not yield recoveries of 100%.</p> <p>Geological logging recorded qualitative descriptions of lithology, alteration, and structure (for all core drilled - 15,352m for 22 drill holes, all intersected the cover sequence) of key geological features.</p> <p>Geotechnical measurements were recorded including Rock Quality Index, solid core recovery and qualitative rock strength measurements.</p> <p>Magnetic susceptibility measurements were recorded every metre. A magnetic susceptibility profile was determined at site on whole core samples.</p> <p>All geological and geotechnical logging was conducted at the Haverton Hill core processing facility.</p> <p>Digital data logging was captured on diamond drill core intervals on the acQuire database.</p> <p>All drill cores were photographed, prior to cutting and/or sampling to document the core quality.</p> <p>The logging is of sufficient quality to support Mineral Resource estimation. Sampling, sample preparation and quality control protocols are consistent with the core sampled.</p> <p>Core was cut and sampled at the Haverton Hill core processing facility. 2.0 m were collected in pre-numbered calico bags and grouped in sample sets. Sample weights typically varied from 0.5 to 8kg. Sample sizes are dependent on mineralisation. Drill core samples were freighted by air and road to the laboratory.</p> <p>Sample preparation was conducted at the independent ISO17025 accredited laboratory (Intertek). Samples were dried at 105°C, and crushed to 95% passing 2mm. A 3kg sub-sample, which was pulverised (using LM5) to produce a product of 95% passing 106µm. Routine grind size analysis is conducted on the sample.</p> <p>Duplicate samples were collected from crush and pulp samples at an acceptable level of variability for the material sampled and style of sample.</p> <p>Periodic size checks (1:20) for crush and pulp samples and sample sets are conducted and recorded in the acQuire database.</p>
Sub-sampling techniques and sample preparation	

Criteria	Commentary
	Assaying of drill core samples was conducted at Intertek. All samples were acid digested followed by ICP-AES/ICP-MS determination (methane) to provide a total assay for copper. Gold analyses were determined by FA50N/AA, which is considered to provide a total assay for gold.
Quality of assay data and laboratory tests	Sampling and assaying quality control procedures consisted of including (CRMs), coarse residue and pulp duplicates with each batch (at least one of each).
	Assays of quality control samples were compared with reference standards and found to be acceptable prior to use of data from analysed batches.
	Laboratory quality control data, including laboratory standards, blank and duplicate samples, are captured in the acQuire database and assessed for accuracy.
	Extended quality control programs including pulp samples submitted with more extensive re-submission programs have been completed.
	Analysis of the available quality control sample assay results indicates that the quality of the data is acceptable and precision has been achieved and the database contains no anomalous data that has been manipulated.
	The assaying techniques and quality control protocols used are considered to be appropriate and suitable for reporting exploration drilling results.
	Sampling intervals defined by the geologist are electronically assigned to the core cutter. Corresponding sample numbers matching pre-labelled core cutting. Corresponding sample numbers matching pre-labelled core cutting. Corresponding sample numbers matching pre-labelled core cutting.
Verification of sampling and assaying	All sampling and assay information were stored in a secure acQuire database.
	Electronically generated sample submission forms providing the sample number, sample type, sample weight and assay results for each submission to the laboratory. Assay results from the laboratory are loaded directly into the acQuire database.
	Assessment of reported significant assay intervals was verified by the geologist and assessment of high resolution core photography. The verification of significant assay intervals was completed by company personnel and the Competent Person/Qualified Person.
	No adjustments are made to assay data, and no twinned holes have been identified.
	There are no currently known drilling, sampling, recovery, or other issues that may affect the accuracy or reliability of the data.
	Drill collar locations were surveyed using a differential GPS with Global Positioning System (GPS) and all drill holes reported.
Location of data points	Drill rig alignment was attained using an electronic azimuth aligner and surveying the rig alignment to the nearest 1m. Drill hole intervals in the cover sequence, and every 6 to 30m in diamond drilling, were surveyed using a single shot (Axis Mining Champ Gyro). The single shot surveys have been converted to surface (Axis Mining Champ) along with a selection of drill holes using a magnetic contactor using a DeviGyro tool - confirming sufficient accuracy for the survey.
Data spacing and distribution	A LIDAR survey was completed over the project area in Nov 2019 to create a topographic model for the project with a spatial accuracy of +/- 0.1m. The topography is generally low relief to flat, elevation within the dune area is generally low, ranging from 0 to 100m above Australian Height Datum (AHD) steepening to the southeast. All coordinates are in the Geocentric Datum of Australian (GDA20 Zone 51). All relative depths are in metres. Within the South-East Crescent and Breccia zone drill hole spacing is generally consistent within the resource extents. Outside the initial resource boundary data is more sparse in lateral extent within the breccia zone over an area of ~2km ² . The data is considered to have a high degree of geological and grade continuity.
	Significant assay intercepts remain open. Further drilling is required to delineate the defined mineralisation. No sample compositing is applied to samples.
	Drilling intersects mineralisation at various angles.

Criteria	Commentary
	Drill holes exploring the extents of the Havieron mineral system in siliciclastic sedimentary facies, mineralised breccia and sub-vertical has been interpreted from historic and Newcrest drill holes.
Orientation of data in relation to geological structure	<p>Variable brecciation, alteration and sulphide mineralisation is observed 650m x 350m trending in a north west orientation and over 1000m</p> <p>The subvertical southeast high grade arcuate crescent sulphide zone has been defined over a strike length of up to 550m, and extended cover.</p> <p>Drilling direction is oriented to intersect the steeply dipping high-grade intersection angle of greater than 40 degrees. The drilled length of than true width of mineralisation.</p> <p>The security of samples is controlled by tracking samples from drill</p>
	<p>Drill core was delivered from the drill rig to the Havieron core yard and geotechnical logging, core processing was completed by New</p> <p>High resolution core photography and cutting of drill core was under facilities.</p>
Sample security	<p>Samples were freighted in sealed bags by air and road to the Laboratory representatives. Sample numbers are generated directly from the core pre-numbered calico bags.</p> <p>Verification of sample numbers and identification is conducted by the sample receipt advise issued to Newcrest.</p> <p>Details of all sample movement are recorded in a database table. Details of analytical suite requested are recorded with the dispatch of sample. Discrepancies logged at the receipt of samples into the analytical system. Internal reviews of core handling, sample preparation and assays are conducted on a regular basis by both project personnel and owner representatives.</p>
Audits or reviews	<p>In the Competent Person's opinion, the sample preparation, security and handling are consistent with current industry standards and are entirely appropriate for use in the mineralisation identified and will be appropriate for use in the reported Resource estimates. There are no identified drilling, sampling or reporting adequacy and reliability of the results of the drilling programme in place.</p>

Section 2: Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	<p>The Havieron Project is entirely contained within mining lease M45/1287, which is held by Greatland Pty Ltd and Newcrest Operations Limited. It is a Joint Venture Agreement (effective 30 November 2020) and Farm-In Agreement between Greatland Gold plc and Newcrest Mining Limited (Greatland Gold holds a 30% interest).</p> <p>Newcrest and Jamukurnu-Yapalikurnu Aboriginal Corporation have entered into a Native Title Agreement which relates to the use of native title land for Newcrest's mining activities. The Native Title Agreement covers a 60km radius around Telfer and includes its exploration and mining activities. The Native Title Agreement (between Newcrest and Greatland Gold) at Havieron.</p> <p>The mining tenement M45/1287 wholly replaces the 100% interest in the exploration tenement on which the Havieron Project was developed (held by Greatland Gold plc in 2020).</p>

Criteria

Exploration done by other parties

Commentary

Newcrest completed six core holes in the vicinity of the Havieron Project in 2018. The completed drill targeting and drilling of nine Reverse Circulation holes totalled approximately 6,800m in 2018. Results of drilling programs have not been reported on the Greatland Gold website.

Geology

Drill hole Information

Data aggregation methods

Relationship between mineralisation widths and intercept lengths

Diagrams

Balanced reporting

Other substantive exploration data

Further work

Drillhole data⁽¹⁾

Havieron Project, Paterson Province, Western Australia

Reporting Criteria: Intercepts reported are downhole drill width (not true width) Au >0.20ppm (0.2g/t Au) and minimum 20m downhole width with maximum consecutive internal dilution of 10m. Average grades are based on length-weighting of samples grades. Also highlighted are high grade intervals of Au >1.0ppm (1g/t Au) and minimum 10m downhole width with maximum consecutive internal dilution of 5m, and intervals of >30g/t which are greater or equal to 30 gram metres (Au_ppm x length) are tabled. Gold and copper grades are reported to two significant figures, the downhole lengths are rounded to 0.1m which may cause some apparent discrepancies in interval widths. Samples are from core drilling which is PQ, HQ or NQ in diameter. Core is photographed and logged by the geology team before being cut. Half core PQ, HQ and NQ samples are prepared for assay and the remaining material is retained in the core farm for future reference. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Total depth (end of hole) is rounded to one decimal place for reporting purposes. Collars denoted with a * show partial results, with further significant assays to be reported in subsequent exploration updates.

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cu (pct)	Cut off	
HAD087W1	MR-DD	464338	7598259	258	1603.1	222	-70							Assays Pending
HAD098W6	MR-DD	463591	7597381	264	1203	38	-61	906	956	50	0.25	0.14	0.2	g/t Au
								1013	1051	38	0.43	0.1	0.2	g/t Au

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cu (pct)	Cut off
								1065	1094	29	0.48	0.06	0.2 g/t Au
								1140	1196	56	0.55	0.12	0.2 g/t Au
HAD098W7	MR-DD 463591	7597381	264	1836.8	38	-61		896	928	32	0.56	0.11	0.2 g/t Au
								1008	1092	84	3.2	0.14	0.2 g/t Au
						incl. 1074		1076	2	56	0.35	30	g.m. Au
						incl. 1080		1082	2	65	1.1	30	g.m. Au
						1128		1210	82	0.7	0.09	0.2	g/t Au
						1242		1320	78	1.2	0.28	0.2	g/t Au
						incl. 1260		1292	32	2.4	0.4	1.0	g/t Au
						1334		1358	24	0.78	0.17	0.2	g/t Au
						1408		1434	26	0.21	0.11	0.2	g/t Au
						1496		1566	70	0.61	0.04	0.2	g/t Au
						1584		1610	26	2.2	0.17	0.2	g/t Au
						1678		1716	38	0.77	0.17	0.2	g/t Au
						incl. 1678		1688	10	1.1	0.26	1.0	g/t Au
HAD098W8	MR-DD 463591	7597381	264	1540.1	38	-61					Assays	Pending	
HAD098W9	MR-DD 463591	7597381	264	1666.1	38	-61					Assays	Pending	
HAD134	MR-DD 464778	7598425	258	1846.4	225	-66	1508	1590	82	2.1	0.25	0.2	g/t Au
						incl. 1540		1570	30	2.4	0.19	1.0	g/t Au
						incl. 1576		1588	12	3	0.28	1.0	g/t Au
						1620		1690	70	0.34	0.05	0.2	g/t Au
						1742		1768	26	0.44	0	0.2	g/t Au
						1780		1841	61	0.31	0.09	0.2	g/t Au
HAD134W1	MR-DD 464778	7598425	258	1795.1	225	-66					Resource	Infill	Hole
HAD134W2	MR-DD 464778	7598425	258	1774.1	225	-66					Resource	Infill	Hole
HAD152W4	MR-DD 463401	7597059	254	2169.5	33	-64	1447	1495	48	0.95	0.09	0.2	g/t Au
						incl. 1483		1493	10	1.9	0.19	1.0	g/t Au
						1683		1710	27	0.53	0.13	0.2	g/t Au
						1994		2022	28	0.34	0.01	0.2	g/t Au
						2056		2142	86	0.88	0.05	0.2	g/t Au
						incl. 2120		2130	10	4.0	0.04	1.0	g/t Au
HAD152W5	MR-DD 463401	7597059	254	2172.2	33	-64	1494	1530	36	0.29	0.07	0.2	g/t Au
						1607		1669	62	0.92	0.4	0.2	g/t Au
						1994		2022	28	0.52	0.07	0.2	g/t Au
						2042		2069	27	1.4	0.06	0.2	g/t Au
						2109		2141	32	0.47	0.03	0.2	g/t Au
HAD161	MR-DD 463407	7597519	263	1518.5	38	-61					Assays	Pending	
HAD161W1	MR-DD 463407	7597519	263	1618	38	-61					Assays	Pending	
HAD163	MR-DD 464490	7598141	258	1725	198	-80	1415	1501	86	1.2	0.04	0.2	g/t Au
						incl. 1452		1478	26	1.9	0.09	1.0	g/t Au
						1582		1604	22	0.66	0.05	0.2	g/t Au
HAD163W1	MR-DD 464490	7598141	258	1718.9	198	-80	1458	1629.1	171.1	0.68	0.04	0.2	g/t Au
						incl. 1492		1524	32	1.5	0.09	1.0	g/t Au
HAD164	MR-DD 464444	7598227	258	1089.6	220	-79					Abandoned	Hole	
HAD164W1	MR-DD 464444	7598227	258	817.5	220	-79					Abandoned	Hole	
HAD164W2	MR-DD 464444	7598227	258	1681.2	220	-79					Resource	Infill	Hole
HAD164W3	MR-DD 464444	7598227	258	1738.3	220	-79					Assays	Pending	
HAD165	MR-DD 464067	7599163	257	996.7	85	-65					No Significant	Results	
HAD166	MR-DD 464338	7598259	258	770.5	218	-81					Abandoned	Hole	
HAD166W1	MR-DD 464338	7598259	258	886.2	218	-81					Abandoned	Hole	
HAD166W2	MR-DD 464338	7598259	258	1772.8	218	-81					Resource	Infill	Hole
HAD167	MR-DD 464625	7598151	258	1888.5	199	-77	1516	1594	78	1.9	0.19	0.2	g/t Au
HAD168	MR-DD 464463	7598018	257	1040.3	210	-80					Abandoned	Hole	
HAD168W1	MR-DD 464463	7598018	257	1045.6	211	-80					Abandoned	Hole	
HAD168W2	MR-DD 464463	7598018	257	1634.5	211	-80	1487	1523	36	0.89	0.02	0.2	g/t Au

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cu (pct)	Cut off
HAD169	MR-DD	464308	7597211	260	865	76	-56				Assays Pending		
HAD170	MR-DD	463275	7598285	254	780.7	68	-60				Assays Pending		
MEC001	MR-DD	463151	7595778	253	497.9	45	-73				Abandoned Hole		
MEC001W1	MR-DD	463151	7595778	253	1143.2	45	-73				No Significant Results		
NOR002	MR-DD	464229	7600143	258	1177.5	85	-75				No Significant Results		

drilling in progress, **partial intercept, assays pending. ^updated intercept ^^previously reported intercept, +intercept within published resource

Figure 34. Schematic plan view map showing drill hole locations and significant intercepts reported in this release superimposed on the interpreted geology. Previously reported holes are not shown for the sake of clarity. Note some holes and results appear on multiple sections due to the sections orientation and sections overlap.

To view an enhanced version of Figure 34, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_036full.jpg

Figure 35. Schematic cross section of geology and significant new drillhole intercepts (looking northwest, Section Line S1, +/-100m section width, as shown in Figure 34). Due to section window size and orientation holes may appear on multiple sections. This diagram highlights >50gram metres intersections drilled during the period. Reported drill holes are outside of the existing resource.

To view an enhanced version of Figure 35, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_037full.jpg

Figure 36. Schematic cross section of geology and significant new drillhole intercepts (looking northwest, Section Line S2, +/-50m section width, as shown in Figure 34). Due to section window size and orientation holes may appear on multiple sections. This diagram highlights >50gram metres intersections drilled during the period. Reported drill holes are outside of the existing resource.

To view an enhanced version of Figure 36, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_038full.jpg

Figure 37. Schematic cross section of geology and significant new drillhole intercepts (looking northwest, Section Line S3, +/-50m section width, as shown in Figure 34). The blue intercepts represent results wholly or partially within the Mineral Resource. Due to section window size and orientation holes may appear on multiple sections. This diagram highlights >50gram metres intersections drilled during the period which. Reported drill holes are outside of the existing resource.

To view an enhanced version of Figure 37, please visit:

https://images.newsfilecorp.com/files/7614/152402_b06dce7ac4bcaa13_039full.jpg

Appendix 4

Spring Peak (Headwater Gold Inc., Farm-In Agreement): JORC Table 1
Section 1: Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	Core samples are obtained from core drilling. HQ diameter diamond core was sampled at intervals ranging from a minimum of 0.57m to a maximum of 0.8m. Halved core was sampled at intervals ranging from a minimum of 0.57m to a maximum of 0.8m. Strong alteration to a maximum of 1.68m (5.5ft) in areas of minimal alteration was sampled. Reverse circulation ("RC") samples are obtained from RC drilling, with sample intervals at the drill site using an industry-standard cyclone and split sample technique. Core drilling was advanced with HQ diameter coring configuration.
Drilling techniques	Core holes are inclined and core oriented on 1.52m runs using an industry-standard orientation system (ACTIII). At the end of each run, the bottom of hole position is marked with a vertical orientation mark. This orientation mark is then transferred to the entire drill core run length.
Drill sample recovery	RC drilling was carried out using a 12 cm (4.6in) conventional hammer bit.
Logging	Precollar drill holes were advanced from surface using conventional protocols. Upon completion of the RC precollar drilling and precollars were run from surface to the bottom of the hole. Cased precollars were re-entered and extended as core tails from the bottom of the casing. Core recovery is systematically recorded from the commencement of drilling against driller's depth blocks in each core tray with data recorded in the core log. This provided the depth, interval of core recovered, and interval of core lost.
Sub-sampling techniques and sample preparation	Core recoveries were typically 100%, with isolated zones of lower recovery. Geological logging recorded qualitative descriptions of lithology, alteration, and structure (for all core drilled - 993m; and for all RC samples - 2180m).
	Geological logging was conducted at the Spring Peak Project site and samples were sent to Bureau Veritas for processing at their facility in Sparks, Nevada.
	Digital data logging was captured, validated and stored in an SQL database.
	All drill core was photographed once sample intervals were established. Sampling, sample preparation and quality control protocols are consistent across all samples.
	Cut core HQ samples. Half cut core samples were collected in Procore sample bags and pre-numbered sample tags and grouped into shipping bins for disposal and transport. Sample lengths ranged from 0.57m to 0.8m. Sample sizes were determined by the degree of mineralisation.
	All drill core samples were freighted by road to Bureau Veritas preparation facility in Sparks, Nevada.
	Sample preparation was conducted at Bureau Veritas facilities in Sparks, Nevada. Sample preparation was carried out at the independent ISO 17025:2017 accredited Bureau Veritas facility in B.C. Samples were dried at 60° C, and crushed to 70% passing 2 mm (method PRP70-250), which was pulverised to produce a pulped sample passing 75 μ m (method PUL85).
	Duplicate sample data are available from crush and pulp samples. Sample sizes are acceptable for the material sampled and style of mineralisation. Obstruction of the sample is addressed with follow-up screen fire assay consisting of a 100g sample.

Criteria	Commentary
	Assaying of drill core samples was conducted at Bureau Veritas in Canada. Samples were analysed for 59 elements using a 4-acid digestion followed by ICP-MS. Gold and silver analyses were determined by 30g fire assay with ICP-ME finish (method FA550). Gold analyses provide a total assay for gold. Gravimetric analyses are automatical and silver analyses >200 using 30 g pulps (method FA550).
Quality of assay data and laboratory tests	Sampling and assaying quality control procedures consisted of including reference materials (CRMs), coarse residue and pulp duplicates with each batch (at least one of each).
	Assays of quality control samples were compared with reference samples and verified as acceptable prior to formal use of data from analyses.
	Laboratory quality duplicates including replicates and preparation duplicates were checked in the laboratory and assessed.
	Analysis of the available quality control sample assay results indicates that the quality of the assay data is acceptable and precision has been achieved. The database contains no analytical data that has been manipulated.
Verification of sampling and assaying	The assaying techniques and quality control protocols used are consistent with industry standard and used for reporting exploration drilling results.
	Core sampling intervals are defined by the geologist during logging and sample identification numbers prior to core photography, cutting, and sample preparation. Sample identification numbers are affixed in the core box corresponding to each sampled interval and placed in a pre-labelled bag containing the sampled core for assay.
Location of data points	All sampling and assay information are maintained in an off-site secure database.
Data spacing and distribution	Sample submission forms providing the sample identification numbers are submitted to the laboratory. Assay results from the laboratory with corresponding sample identification numbers are entered into the SQL database.
Orientation of data in relation to geological structure	No adjustments are made to assay data. Drilling intersects mineralized zones and mineralized zones have been completed. There are no currently known drilling, which could materially affect the accuracy or reliability of the data.
	All collar coordinates are provided in the North American Datum (NAD83) coordinate system.
	Surface drill collar locations are monumented with a stamped brass collar and recorded with a Trimble RTX GPS to 0.10m accuracy. Azimuth and inclination are recorded using a Trimble Reflex EZ Sprint Gyro continuous survey tool from collar to total depth.
	A total of 15 drillholes have been completed by Headwater Gold and the number of holes is which is insufficient for estimation of a Mineral Resource.
	No sample compositing is applied to samples.
	A fan of 4 drill holes targeting the Disco Vein zone was drilled from an azimuth of 330 degrees in order to drill broadly perpendicular to the inferred geological structure. The inclination of drill holes ranged from -45 degrees to -73 degrees at multiple elevations.
	Additional exploration drilling comprised 6 widely spaced drillholes targeting with a variety of orientations. All drill holes were designed to be perpendicular to inferred strike.

Criteria	Commentary
	The security of samples is ensured by tracking samples from drill rig to the laboratory. Samples are transported in secure containers, transported by truck or air, and handled by qualified personnel.
Sample security	Drill core was delivered from the drill rig to the Hawthorne project office. Samples were palletised and then transported from Hawthorne to Sparks, NV. Samples are tracked using detailed geological logging, high resolution core photography, cutting, and handling by qualified personnel.
	Sample numbers are obtained from pre-made sample tag books, filed in the database. Sample tags are inserted into labelled Protexo fabric bags and the bagged sample secured with a drawstring.
Audits or reviews	Core samples were placed into dedicated sample shipment bins for transport. Samples are transported by truck to the preparation lab where samples are prepared for analysis.
	RC samples are transported from drill pads to the Hawthorne project office. Samples are dispatched to the Bureau Veritas prep facility in Sparks, NV using an in-house transport service.
	Verification of sample numbers and identification is conducted by the laboratory using sample receipt advice issued to Headwater Gold.
	Details of all sample shipments are recorded in chain of custody documents and communicated to the laboratory analytical services. Shipping dates, submittal IDs, sample ranges, and special instructions for the dispatch of samples to the laboratory analytical services. Receiving details, including the use of methods and duplicates by which to process the samples unless otherwise specified, are noted during sample login at the laboratory are communicated and recorded.
	Due to the early stage of the exploration program, no external audits or reviews have been conducted.
	Internal reviews of sample handling and preparation are undertaken by Headwater Gold using appropriate methods, QAQC procedures, sample intervals, and sample recovery rates, as determined by Canadian Standards of Disclosure for Mineral Projects.

Section 2: Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	Spring Peak comprises 286 unpatented lode mining claims and is a 50% interest in a Farm-in Agreement with CP Holdings Corporation and Headwater Gold. Headwater Gold has the option to increase its interest to 100% by making certain cash and exploration payments. Headwater Gold can obtain a 100% interest in the property by making certain cash and exploration payments. The Farm-in Agreement with CP Holdings Corporation and Headwater Gold as the initial Manager of the Spring Peak Project.
Exploration done by other parties	All obligations with respect to legislative requirements are in place and in standing. Labradex, Teck, Radius Gold, and OceanaGold conducted exploration work on the property.
Geology	Headwater Gold acquired the Spring Peak Property in a Farm-in Agreement with CP Holdings Corporation and Headwater Gold. The Farm-in Agreement was entered into in August of 2021. Previously drilling by Labradex and Teck took place at Spring Peak between 1990 and 2000. The Spring Peak Project is located in the western part of the Spring Valley, Nevada, U.S.A, 38 km southwest of the town of Hawthorne, NV.
Drill hole information	Gold mineralisation is associated with a low-sulfidation epithermal system. The Spring Peak Project is located in the Spring Valley Volcanic Field. Mineralization is hosted in high-angle shear zones and associated with alteration. Mineralized veins occur in both a Cretaceous and Paleogene age metavolcanic rocks into which the granite stock has been emplaced. As provided.
Data aggregation methods	Primary intervals are reported using 0.2 g/t Au cut off grade. Significant assay intervals reported represent apparent widths estimated to be approximately 60% of downhole length. As provided.
Relationship between mineralisation widths and intercept lengths	
Diagrams	

Criteria	Commentary
Balanced reporting	Exploration drilling programs are ongoing and further Newcrest releases.
Other substantive exploration data	Nil.
Further work	Planned follow up exploration commencing in July, 2024.
Drillhole data ⁽¹⁾	

Spring Peak, Nevada USA

Reporting Criteria: Intervals are reported as length-weighted averages using a cut-off of 0.2 g/t Au and a minimum length of 0.3m, with less than 30% total internal dilution. Also reported are intervals greater than 2.0g/t Au. Intervals below a cutoff of 0.2g/t Au were not reported as significant results. Gold grades are reported to two significant figures. Samples are from RC drilling and core drilling which is HQ in diameter. Core is photographed and logged by the geology team before being whole core sampled and sent for assay. Each assay batch is submitted with duplicates and standards to monitor laboratory quality.

Hole	Depth (m)	Length (m)	Total Depth (m)	Interval (m)	Au (ppm)	Cut off (ppm)
BB256667 2234856428587	-47					Assays pending
BB2097741 22349531398285	-45					Assays pending
BB219807 22357384739588	-48					Assays pending
BB236979 22357391348352	-51					Assays pending
BB2248081 22380222708157	-58					Assays pending
BB205114 2234958293324	-63					Assays pending
BB205209 2234954254327	-67					Assays pending
BB205343 2234988375357	-74	290.82	2.7	0.2		
		Incl. 262046	10	2		
		Incl. 275386	16	2		
BB2298464 22853232487468	-46					Assays pending
BB2596544 2236759286382	-45					Assays pending

drilling in progress, **partial intercept, assays pending. ^updated intercept ^^previously reported intercept

Forward Looking Statements

This document includes forward looking statements and forward looking information within the meaning of securities laws of applicable jurisdictions. Forward looking statements can generally be identified by the use of words such as "may", "will", "expect", "intend", "plan", "estimate", "target", "anticipate", "believe", "continue", "objectives", "outlook" and "guidance", or other similar words and may include, without limitation, statements regarding estimated reserves and resources, internal rates of return, expansion, exploration and development activities and the specifications, targets, results, analyses, interpretations, benefits, costs and timing of them; certain plans, strategies, aspirations and objectives of management, anticipated production, sustainability initiatives, climate scenarios, dates for projects, reports, studies or construction, expected costs, cash flow or production outputs and anticipated productive lives of projects and mines. The Company continues to distinguish between outlook and guidance. Guidance statements relate to the current financial year. Outlook statements relate to years subsequent to the current financial year.

These forward looking statements involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance, and achievements to differ materially from any future results, performance or achievements, or industry results, expressed or implied by these forward looking statements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of resources or reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation. For further information as to the risks which may impact on the Company's results and performance, please see the risk factors discussed in the Operating and Financial

Review included in the Appendix 4E and Financial Report for the year ended 30 June 2022 and the Annual Information Form dated 14 December 2022 which are available to view at www.asx.com.au under the code "NCM" and on Newcrest's SEDAR profile.

Forward looking statements are based on management's current expectations and reflect Newcrest's good faith assumptions, judgements, estimates and other information available as at the date of this report and/or the date of Newcrest's planning or scenario analysis processes as to the financial, market, regulatory and other relevant environments that will exist and affect Newcrest's business and operations in the future. Newcrest does not give any assurance that the assumptions will prove to be correct. There may be other factors that could cause actual results or events not to be as anticipated, and many events are beyond the reasonable control of Newcrest. Readers are cautioned not to place undue reliance on forward looking statements, particularly in the current economic climate with the significant volatility, uncertainty and disruption caused by global events such as geopolitical tensions and the ongoing COVID19 pandemic. Forward looking statements in this document speak only at the date of issue. Except as required by applicable laws or regulations, Newcrest does not undertake any obligation to publicly update or revise any of the forward looking statements or to advise of any change in assumptions on which any such statement is based.

Ore Reserves and Mineral Resources Reporting Requirements

As an Australian Company with securities listed on the Australian Securities Exchange (ASX), Newcrest is subject to Australian disclosure requirements and standards, including the requirements of the Corporations Act 2001 and the ASX. Investors should note that it is a requirement of the ASX Listing Rules that the reporting of Ore Reserves and Mineral Resources in Australia is in accordance with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code) and that Newcrest's Ore Reserve and Mineral Resource estimates and reporting comply with the JORC Code.

Newcrest is also subject to certain Canadian disclosure requirements and standards, as a result of its secondary listing on the Toronto Stock Exchange (TSX), including the requirements of National Instrument 43-101 - Standards of Disclosure for Mineral Projects (NI 43-101). Investors should note that it is a requirement of Canadian securities law that the reporting of Mineral Reserves and Mineral Resources in Canada and the disclosure of scientific and technical information concerning a mineral project on a property material to Newcrest comply with NI 43-101.

Newcrest's material properties are currently Cadia, Lihir, Red Chris and Wafi-Golpu. Copies of the NI 43-101 Reports for Cadia, Lihir and Wafi-Golpu, which were released on 14 October 2020, and Red Chris, which was released on 30 November 2021, are available at www.newcrest.com and on Newcrest's SEDAR profile.

Competent Person's Statement

The information in this document that relates to Exploration Targets, Exploration Results, and related scientific and technical information, is based on and fairly represents information compiled by Mr F. MacCorquodale. Mr MacCorquodale is the General Manager - Greenfields Exploration and a full-time employee of Newcrest Mining Ltd. He is a shareholder in Newcrest Mining Ltd and is entitled to participate in Newcrest's executive equity long term incentive plan, details of which are included in Newcrest's 2022 Remuneration Report. He is a Member of the Australian Institute of Geoscientists. Mr MacCorquodale has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code and as a Qualified Person under NI 43-101. Mr MacCorquodale approves the disclosure of scientific and technical information contained in this document and consents to the inclusion of material of the matters based on his information in the form and context in which it appears.

Authorised by the Newcrest Disclosure Committee

For further information please contact

Investor Enquires
Tom Dixon

+61 3 9522 5570
+61 450 541 389
Tom.Dixon@newcrest.com.au

Rebecca Lay
+61 3 9522 5298
+61 438 355 511
Rebecca.Lay@newcrest.com.au

North American Investor Enquiries
Vlada Cvijetinovic
+1 604 566 8781
+1 604 240 2998
Vlada.Cvijetinovic@newcrest.com.au

Media Enquiries
Tim Salathiel
+61 3 9522 4263
+61 407 885 272
Tim.Salathiel@newcrest.com.au

This information is available on our website at www.newcrest.com.

1 # drilling in progress ** partial intercept, assays pending ^ updated intercept or ^^ previously reported.
2 # drilling in progress ** partial intercept, assays pending ^ updated intercept or ^^ previously reported.
3 # drilling in progress ** partial intercept, assays pending ^ updated intercept or ^^ previously reported.

To view the source version of this press release, please visit <https://www.newsfilecorp.com/release/152402>

Dieser Artikel stammt von Rohstoff-Welt.de

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/433783--Newcrest-Mining-Limited---Quarterly-Exploration-Report---31-December-2022.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinien](#).