

Newcrest Exploration Quarterly Report

28.01.2022 | [Newsfile](#)

Quarterly Exploration Report
For the three months ended 31 December 2021

Red Chris and Havieron drilling continues to expand mineralisation

At Red Chris, drilling continues to expand the footprint and continuity of the higher grade mineralisation at East Ridge.

- Drilling has expanded mineralisation to the east, hole RC740 returned 156m @ 0.73g/t Au & 0.71% Cu from 1,452m, including 86m @ 1.2g/t Au & 0.97% Cu from 1,522m and hole RC745^{^^} returned 366m @ 0.45g/t Au & 0.57% Cu from 728m, including 36m @ 1.4g/t Au & 1.2% Cu from 960m. RC740, located 100m east of RC745 is one of the most eastern holes drilled to date. Mineralisation remains open to the east.
- Holes RC739 and RC748 demonstrated continuity of higher grade. RC739^{^^} returned 390m @ 0.63g/t Au & 0.48% Cu from 1,088m, including 44m @ 2.0g/t Au & 1.3% Cu from 1,402m. This hole is located 100m east of RC727 (previously reported, returned 346m @ 1.1g/t Au & 0.79% Cu from 1,046m, including 56m @ 3.5g/t Au & 1.8% Cu from 1,336m) and extended the higher grade a further 100m to the east. RC748 returned 452m @ 0.60g/t Au & 0.54% Cu from 1,192m including 106m @ 1.2g/t Au & 1.0% Cu from 1,384m. The hole is located 100m below RC727 (previously reported) and extended the higher grade mineralisation a further 100m down dip.
- Drilling to define the extent of the East Ridge mineralised corridor is ongoing.

At Havieron, growth drilling continues to identify high grade extensions to the South East Crescent Zone at depth as well as high grade crescent style mineralisation within extensions of the Eastern Breccia. Highlights include:

- South East Crescent extensions more than 250m below the current Mineral Resource estimate continued to return high grade results including HAD086W3^{^^} 44.7m @ 7.1g/t Au & 0.17% Cu from 1,412m including 20.2m @ 15g/t Au & 0.29% Cu from 1,421m.
- High grade extensions to the Eastern Breccia 200m to the SW of previous drilling include HAD104: 62.5m @ 5.9g/t Au & 0.30% Cu from 1,546.5m including 49.4m @ 7.1g/t Au & 0.38% Cu from 1,554.6m. This result is the most significant seen outside of the South East Crescent Zone to date, and confirms the potential for this separate NW trending Eastern Breccia corridor to host Crescent style high grade mineralisation. Drilling is now focussed on defining the extents of this higher-grade mineralisation which remains open in all directions.
- At the South East Crescent Zone the infill drilling completed validates both geological and grade continuity.
- Drill testing of new geophysical targets 2km outside of the Havieron system has commenced.

Melbourne, January 27, 2022 - [Newcrest Mining Ltd.](#) (ASX: NCM) (TSX: NCM) (PNGX: NCM) Newcrest Managing Director and Chief Executive Officer, Sandeep Biswas, said, "Our drilling results across the quarter continue to demonstrate the quality of our Red Chris and Havieron assets. At Red Chris, results at East Ridge have expanded the footprint of the mineralised corridor, with the latest drilling intersecting higher grade mineralisation within the eastern extents of the prospect. The high grade mineralisation remains open to the east and at depth which provides exciting potential for the resource base at Red Chris to grow over time."

"At Havieron, our exploration continues to demonstrate growth upside, with HAD104 in the Eastern Breccia intersecting the highest grade mineralisation observed to date outside the South East Crescent Zone. This Eastern Breccia corridor sits outside of the Inferred Mineral Resource estimate and confirms the prospectivity of the Havieron region to host additional high grade zones and the significant potential for further resource growth," said Mr Biswas.

Red Chris - Significant results since the September 2021 Quarterly Exploration Report⁽¹⁾:

- RC735^^
 - 240m @ 0.49g/t Au & 0.53% Cu from 888m
 - including 102m @ 0.82g/t Au & 0.59% Cu from 1,012m
 - including 24m @ 1.4g/t Au & 0.68% Cu from 1,068m
- RC739^^
 - 390m @ 0.63g/t Au & 0.48% Cu from 1,088m
 - including 70m @ 0.68g/t Au & 0.49% Cu from 1,302m
 - including 44m @ 2.0g/t Au & 1.3% Cu from 1,402m
- RC740
 - 156m @ 0.73g/t Au & 0.71% Cu from 1,452m
 - including 86m @ 1.2g/t Au & 0.97% Cu from 1,522m
 - including 46m @ 1.6g/t Au & 1.1% Cu from 1,556m
- RC745^^
 - 366m @ 0.45g/t Au & 0.57% Cu from 728m
 - including 58m @ 1.1g/t Au & 1.0% Cu from 958m
 - including 36m @ 1.4g/t Au & 1.2% Cu from 960m
- RC747^^
 - 306m @ 0.28g/t Au & 0.39% Cu from 706m
 - including 46m @ 0.77g/t Au & 0.86% Cu from 880m
 - including 20m @ 1.1g/t Au & 1.2% Cu from 896m
- RC748
 - 452m @ 0.60g/t Au & 0.54% Cu from 1,192m
 - including 106m @ 1.2g/t Au & 1.0% Cu from 1,384m
 - including 98m @ 1.3g/t Au & 1.0% Cu from 1,386m

Havieron - Significant results since the September 2021 Quarterly Exploration Report⁽¹⁾:

- HAD053W5^^
 - 119.7m @ 1.2g/t Au & 0.49% Cu from 1,041.4m
- HAD053W6^^
 - 164.3m @ 1.8g/t Au & 0.53% Cu from 1,065m
 - including 14.3m @ 9.7g/t Au & 0.78% Cu from 1,065.7m
- HAD061W1^^
 - 144.7m @ 1.6g/t Au & 0.14% Cu from 856.3m
- HAD085W4
 - 46.4m @ 11g/t Au & 0.26% Cu from 1,400.6m
 - including 3.9m @ 98g/t Au and 0.04% Cu from 1,402.1m
- HAD086W3^^
 - 44.7m @ 7.1g/t Au & 0.17% Cu from 1,412m
 - including 20.2m @ 15g/t Au & 0.29% Cu from 1,421m
 - 48m @ 2.2g/t Au & 0.15% Cu from 1,525m
 - including 26.9m @ 3.7g/t Au & 0.26% Cu from 1,538.1m
- HAD086W4^^
 - 102.3m @ 1.5g/t Au & 0.17% Cu from 1,404.3m
- HAD104
 - 62.5m @ 5.9g/t Au & 0.30% Cu from 1546.5m
 - including 49.4m @ 7.1g/t Au & 0.38% Cu from 1,554.6m
- HAD133W4^^
 - 69.8m @ 2.0g/t Au & 0.32% Cu from 1,329.2m
- HAD133W5^^
 - 110.4m @ 2.2g/t Au & 0.21% Cu from 1,418.6m
 - including 62.8m @ 3.0g/t Au & 0.16% Cu from 1,460.5m
- HAD133W6**
 - 168.1m @ 1.9g/t Au & 0.17% Cu from 1,424.6m
 - including 43.1m @ 3.7g/t Au & 0.34% Cu from 1,425.9m

- HAD148W1^{^^}
 - 89.3m @ 1.3g/t Au & 0.05% Cu from 807.8m
- HAD148W2^{^^}
 - 35.4m @ 4.4g/t Au & 0.25% Cu from 938.1m
- HAD149W2^{^^}
 - 45.1m @ 6.7g/t Au & 0.06% Cu from 919.5m
- HAD150W1^{^^}
 - 140m @ 2.9g/t Au & 0.07% Cu from 909m
- HAD150W2^{^^}
 - 113.8m @ 3.4g/t Au & 0.10% Cu from 996.2m
 - including 14.2m @ 20g/t Au & 0.14% Cu from 1,035.8m

Red Chris, British Columbia, Canada⁽²⁾

Red Chris is a joint venture between Newcrest (70%) and [Imperial Metals Corp.](#) (30%) which is operated by Newcrest.

The Brownfields Exploration program is focused on the discovery of additional zones of higher grade mineralisation within the Red Chris porphyry corridor, including targets outside of Newcrest's initial Mineral Resource estimate. During the period, there were up to eight diamond drill rigs in operation. A further 21,275m of drilling has been completed from 27 drill holes, with all drill holes intersecting mineralisation (except 15 drill holes which were dedicated geotechnical holes). This contributed to a total of 217,349m of drilling from 199 drill holes since Newcrest acquired its interest in the joint venture in August 2019.

At East Ridge, located adjacent to the East Zone, drilling is ongoing with 18 holes completed and 4 in progress. The follow up drilling is being completed on a nominal 100m x 100m grid to determine the footprint of the mineralisation and demonstrate the continuity of the higher grade mineralisation. Drilling to date has tested a corridor 800m long and to a vertical extent of 1,000m.

Results for the reporting period include:

- RC735^{^^}
 - 240m @ 0.49g/t Au & 0.53% Cu from 888m
 - including 102m @ 0.82g/t Au & 0.59% Cu from 1,012m
 - including 24m @ 1.4g/t Au & 0.68% Cu from 1,068m
- RC739^{^^}
 - 390m @ 0.63g/t Au & 0.48% Cu from 1,088m
 - including 38m @ 1.8g/t Au & 0.71% Cu from 1,244m
 - including 22m @ 2.6g/t Au & 1.0% Cu from 1,246m
 - including 70m @ 0.68g/t Au & 0.49% Cu from 1,302m
 - including 44m @ 2.0g/t Au & 1.3% Cu from 1,402m
- RC740
 - 156m @ 0.73g/t Au & 0.71% Cu from 1,452m
 - including 86m @ 1.2g/t Au & 0.97% Cu from 1,522m
 - including 46m @ 1.6g/t Au & 1.1% Cu from 1,556m
- RC745^{^^}
 - 366m @ 0.45g/t Au & 0.57% Cu from 728m
 - including 58m @ 1.1g/t Au & 1.0% Cu from 958m
 - including 36m @ 1.4g/t Au & 1.2% Cu from 960m
- RC747^{^^}
 - 306m @ 0.28g/t Au & 0.39% Cu from 706m
 - including 46m @ 0.77g/t Au & 0.86% Cu from 880m
 - including 20m @ 1.1g/t Au & 1.2% Cu from 896m
- RC748
 - 452m @ 0.60g/t Au & 0.54% Cu from 1,192m
 - including 106m @ 1.2g/t Au & 1.0% Cu from 1,384m
 - including 98m @ 1.3g/t Au & 1.0% Cu from 1,386m

Drilling continues to expand the footprint and continuity of the higher grade. Holes RC740, RC745 and RC748 have extended the corridor to the east, with hole RC740 being the deepest hole drilled to date. Mineralisation remains open to the east and at depth. Holes RC739 and RC748 have demonstrated

continuity of the higher grade, by extending higher grade mineralisation 100m to the east and 100m below RC727 (previously reported, returned 346m @ 1.1g/t Au & 0.79% Cu from 1,046m, including 56m @ 3.5g/t Au & 1.8% Cu from 1,336m).

The East Ridge mineralised corridor (>0.4g/t Au and >0.4% Cu) now extends over 800m long, up to 1,000m high and 125m wide, with higher grade (>0.8g/t Au and >0.8% Cu) in several smaller pods over an area 500m high, 400m long and 100m wide.

East Ridge is located east of East Zone and is outside of Newcrest's initial Mineral Resource estimate, supporting the potential for resource growth over time. Follow-up drilling is in progress to further define the extent and continuity of this high grade mineralisation.

Approximately 50,000m of growth-related drilling is planned for calendar year 2022 from eight drill rigs.

Refer to Appendix 1 for additional information, and the Drillhole data table for all results reported during the period.

Figure 1. Schematic plan view map of the Red Chris porphyry corridor spanning East Ridge, East Zone, Main Zone and Gully Zone showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.3g/t Au, 1g/t Au, 0.3% Cu and 1% Cu shell projections generated from a Leapfrog™ model.

To view an enhanced version of Figure 1, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_003full.jpg

Figure 2. Long section view (looking North West) of the Red Chris porphyry corridor showing drill hole locations and gold distribution.

To view an enhanced version of Figure 2, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_004full.jpg

Figure 3. Oblique schematic section view of the Red Chris porphyry corridor showing gold distribution. 0.3 g/t Au, 1 g/t Au, 0.3% Cu and 1% Cu shell projections generated from the Leapfrog™ model.

To view an enhanced version of Figure 3, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_005full.jpg

Havieron Project, Western Australia, Australia⁽³⁾

The Havieron Project is operated by Newcrest under a Joint Venture Agreement (JVA) with Greatland Gold. Following the delivery of the Pre-Feasibility Study on 12 October 2021, Newcrest is now entitled to an additional 10% interest in the Havieron Project, which would bring Newcrest's cumulative interest to 70%. Newcrest has an option to acquire an additional 5% Joint Venture interest for fair market value, exercisable during the 12 months from 12 December 2021. In December 2021, Newcrest provided notice to Greatland

Gold to begin the process under the JVA to seek to agree the option price for the additional 5% Havieron Joint Venture interest. The JVA includes tolling principles reflecting the intention of the parties that, subject to a successful exploration program, Feasibility Study and a positive decision to mine, the resulting joint venture mineralised material will be processed at Telfer.

The Havieron Project is centred on a deep magnetic anomaly located 45km east of Telfer in the Paterson Province. The deposit is overlain by more than 420m of post mineral Permian cover. A total of 14,481m of new drilling has been completed from 18 drill holes during the period. This report is covering results from 33 holes (including 5 holes completed this period, and 28 holes from the September quarter). Of the reported holes, 22 holes returned significant assay intercepts in excess of 50 gram metres Au (Au ppm x length m). A total of 226,492m of drilling from 272 drill holes has been completed since Newcrest commenced exploration activity (excluding holes in progress, abandoned holes, or drill holes which have not been sampled).

Drilling in the reporting period was focused on potential resource growth at the South East Crescent Zone, Northern Breccia and Eastern Breccia, and infill drilling the South East Crescent Zone to support the potential conversion of the Inferred Resource to Indicated Resource. Drilling included:

- South East Crescent Deeps - assay results reported for six drill holes, two holes awaiting assays.
- Northern Breccia & North West Pod - assay results reported for one drill hole, two holes awaiting assays.
- Eastern Breccia - assay results reported for four drill holes, one hole awaiting assays.
- First pass testing of geophysical targets outboard of the Havieron system (at Havieron North and Zipa) -assay results reported for one drill hole, two holes awaiting assays.
- South East Crescent Zone Infill - assay results reported for twenty-one drill holes.

At the South East Crescent Deeps, growth drilling targeting higher grade mineralisation at depth on 75m by 75m spacing has extended the mineralisation 250m below the initial Inferred Mineral Resource estimate. New results from six drill holes have been received, with results from five drill holes returning greater than 50 gram metre intercepts. Refer to Appendix 2 for all results reported.

Results include:

- HAD086W3^{^^}
 - 44.7m @ 7.1g/t Au & 0.17% Cu from 1,412m
 - including 20.2m @ 15g/t Au & 0.29% Cu from 1,421m
 - 48m @ 2.2g/t Au & 0.15% Cu from 1,525m
 - including 26.9m @ 3.7g/t Au & 0.26% Cu from 1,538.1m
- HAD086W4^{^^}
 - 102.3m @ 1.5g/t Au & 0.17% Cu from 1,404.3m
- HAD133W4^{^^}
 - 69.8m @ 2.0g/t Au & 0.32% Cu from 1,329.2m
- HAD133W5^{^^}
 - 110.4m @ 2.2g/t Au & 0.21% Cu from 1,418.6m
 - including 62.8m @ 3.0g/t Au & 0.16% Cu from 1,460.5m
- HAD133W6^{**}
 - 168.1m @ 1.9g/t Au & 0.17% Cu from 1,424.6m
 - including 43.1m @ 3.7g/t Au & 0.34% Cu from 1425.9m

Further to results reported in the last period, HAD086W3 returned assays for the lower portion of the drill hole and reported a second high grade zone 200m below the existing resource of 48m^{^^} @ 2.2g/t Au & 0.15% Cu from 1,525m, including 26.9m^{^^} @ 3.7g/t Au & 0.26% Cu from 1,538.1m. A mineralised zone 100m below HAD086W3 was returned in HAD086W4, which confirmed extension of crescent mineralisation over 250m from the current Inferred Mineral Resource extents. These results are approximately 100m to the north-west of prior high grade hole HAD133W1 and continue to support extensions of the South East Crescent Zone at depth. Drilling continues to assess the depth extents of the South East Crescent Zone which now has a vertical extent of over 900m.

At the Eastern Breccia, assays for an additional four holes targeting strike extensions from previously reported drill holes HAD083 and HAD084 have been received. Interpretation of the results indicate the potential for a separate north west trending corridor, with an alteration footprint of approximately 600m, with crescent like higher grade zones developed internal to this Eastern Breccia. The most significant intercept to

date was returned during the reporting period in HAD104 returning 62.5m @ 5.9g/t Au & 0.30% Cu from 1546.5m, including 49.4m @ 7.1g/t Au & 0.38% Cu from 1,554.6m. The intercept is related to massive sulphide and quartz infill, which is characteristic of the Crescent zone, and is the first intercept on the eastern side of the dolerite. The intercept is ~200m SW of the previously reported initial eastern breccia drillholes HAD083 and HAD084. HAD104 has highlighted the potential for this separate NW trending eastern breccia corridor to host crescent style high grade mineralisation. Drilling is now focussed on defining the extents of this higher grade mineralisation seen in HAD104 which remains open in all directions.

Drilling to test geophysical targets outside of the known Havieron system have commenced at Havieron North, and Zipa. The Havieron North target is located 2 km north of Havieron and is sited on a magnetic high anomaly. Zipa, is located approximately 1 km to the west of Havieron North and is centred on a prominent gravity high anomaly. The initial Havieron North drillhole did not return any significant results but did intercept alteration consistent with that seen at Havieron. Assay results are awaiting for the two completed Zipa drillholes. Drilling continues to test these and other targets outside of the main Havieron deposit.

South East Crescent Zone Inferred Mineral Resource infill drilling was finalised during the period, with 3 further drill holes completed, and assays reported for all twenty-one drill holes (including 17 drill holes from the prior period). This drilling is designed to infill the South East Crescent Zone Inferred Mineral Resource volume to 50m x 50m spacing to support the potential upgrade of a significant portion of the Inferred Mineral Resource to an Indicated Mineral Resource. Results received from infill drilling support the modelled grade and thickness within the South East Crescent Zone Mineral Resource extents.

Results include:

- HAD053W5^{AA}
 - 119.7m @ 1.2g/t Au & 0.49% Cu from 1,041.4m
- HAD053W6^{AA}
 - 164.3m @ 1.8g/t Au & 0.53% Cu from 1,065m
 - including 14.3m @ 9.7g/t Au & 0.78% Cu from 1,065.7m
- HAD061W1^{AA}
 - 144.7m @ 1.6g/t Au & 0.14% Cu from 856.3m
- HAD085W4
 - 46.4m @ 11g/t Au & 0.26% Cu from 1400.6m
 - including 3.9m @ 98g/t Au and 0.04% Cu from 1,402.1m
- HAD148W1^{AA}
 - 89.3m @ 1.3g/t Au & 0.05% Cu from 807.8m
- HAD148W2^{AA}
 - 35.4m @ 4.4g/t Au & 0.25% Cu from 938.1m
- HAD149W2^{AA}
 - 45.1m @ 6.7g/t Au & 0.06% Cu from 919.5m
- HAD150W1^{AA}
 - 140m @ 2.9g/t Au & 0.07% Cu from 909m
- HAD150W2^{AA}
 - 113.8m @ 3.4g/t Au & 0.10% Cu from 996.2m
 - including 14.2m @ 20g/t Au & 0.14% Cu from 1,035.8m

All drill programs have now returned to growth targets with up to eight drill rigs operational. Growth drilling continues to show potential for resource additions outside of the existing Inferred Mineral Resource limits, including:

- Extension of the South East Crescent Zone at depth below the current Mineral Resource, where increasing grade and thickness of mineralisation has been observed from recent drilling;
- Expansion of multiple higher-grade targets including Northern Breccia and North West Pod; and
- Potential for additional North West trending structural corridors including the Eastern Breccia.
- Additionally, drilling is continuing to target geophysical targets outside of the main Havieron system.

Refer to Appendix 2 for additional information and Drillhole data table for all results reported during the period.

Figure 4. 3D Plan view schematic showing the spatial association of the South East Crescent, Northern Breccia, North West Pod and Eastern Breccia targets in relation to the Inferred Resource extents. Also highlighted are previously reported intercepts >100 gram metres (Au ppm x length) that have been intersected outside of the Inferred Mineral Resource.

To view an enhanced version of Figure 4, please visit:
https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_006full.jpg

Figure 5. 3D section view schematic across section line A-A' on Figure 4, highlighting selected South East Crescent growth intercepts below the current Inferred Resource.

To view an enhanced version of Figure 5, please visit:
https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_007full.jpg

Figure 6. Plan view schematic of a horizontal slice at 4700mRL through the Crescent Sulphide Zone and Breccia-hosted Zones, showing the extents of the 0.5 and 1.0 g/t Au Leapfrog™ grade shells with highlighted newly reported intercepts for this period. This diagram highlights >100gram metres intersections drilled during the period which are >1g/t Au, refer to inset diagram for relationship to all Havieron drilling.

To view an enhanced version of Figure 6, please visit:
https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_008full.jpg

Wilki Project, Western Australia, Australia

The Wilki Project is an exploration farm-in and joint venture with Antipa Minerals Limited (Antipa). The project area covers a strategic landholding of ~2,200km² surrounding the Telfer operation and is adjacent to the Havieron Project. Newcrest entered into this exploration farm-in and joint venture agreement with Antipa on 11 March 2020. Newcrest currently has a 9.9% shareholding in Antipa.

Newcrest has elected to proceed to the next stage (Stage 1) of the farm-in agreement following completion of the initial exploration expenditure commitment (A\$6 million). Newcrest has the potential to earn a 51% joint venture interest in the Wilki Project through expenditure of a further A\$10 million by March 2025 during Stage 1⁴.

Scout diamond drilling of the Tyama Prospect was completed during the period. Results returned low level Zn anomalism. In addition, ground electromagnetic surveys were completed over priority target areas during the period. Processing and interpretation has commenced.

Juri Joint Venture, Western Australia, Australia

The Juri Joint Venture is a farm-in and joint venture agreement with Greatland Gold with respect to the Black Hills and Paterson Range East projects, located within the Paterson Province approximately 50km from the Telfer operation and in proximity to the Havieron Project. The joint venture covers an area of approximately 248km².

Newcrest has met the Stage 1 exploration expenditure (A\$3 million) and now holds a 51% interest in the Juri Joint Venture. Under the terms of the agreement, Newcrest has the potential to earn an additional 24% joint

venture interest (for a cumulative 75% joint venture interest) through expenditure of a further A\$17 million over three years during Stage 2⁴.

Follow up ground electromagnetic surveys over additional targets at both Paterson Range East and Black Hills were completed during the period.

Tennant East, Northern Territory, Australia

Work programs focussing on undercover targets at the Tennant East project (located 200km east of Tennant Creek) have been completed over the initial six target areas. Induced polarisation (IP) data processing is currently progressing. Scout drilling is planned to be completed on defined coincident gravity, magnetic and IP targets in calendar year 2022.

Nevada, USA

Drill activities were completed at the Jarbidge project in north-eastern Nevada during the period with testing focused on low sulfidation epithermal vein targets. Assay results are pending, but visually the targets are downgraded. As a result, Newcrest has provided notice of termination with respect to several of the option agreements underlying the Jarbidge project with the decision to retain any remaining option agreements pending the receipt of outstanding assay results and conducting required reclamation activities.

Drilling has commenced at the Fortuity89 project in south-western Nevada.

Central Andes, Northern Chile

Drilling was conducted across Newcrest's Chilean exploration project portfolio with 2,654m drilled during the quarter at Atlas and El Dorado (Gorbea Option and Farm-in Agreement with [Mirasol Resources Ltd.](#)), Miocene (Option and Farm-in Agreement with [Cornerstone Capital Resources Inc.](#)) and Esparta (Option Agreement with private individuals). Interpretation of the data is ongoing, with assay results pending.

Northern Andes, Ecuador

Scout drilling commenced in November at the Gamora Project, located within southeast Ecuador. This work is being conducted by Newcrest as the operator under an earn-in agreement with Lundin Gold, pursuant to which Newcrest can earn up to a 50% interest in eight exploration concessions. The concession area covers strategic landholdings to the north and south of Lundin Gold's Fruta del Norte mining operation.

The program at Gamora is focused on testing priority copper-gold porphyry targets with two core holes completed with assays pending. Drilling is ongoing.

Appendix 1

Red Chris (70% Newcrest): JORC Table 1 Section 1: Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	Core samples are obtained from core drilling. HQ and NQ diameter 6m run. Core was cut using an automatic core-cutter and half core sequences were not sampled. Core drilling was advanced with HQ3, HQ, NQ3 and NQ diameter
Drilling techniques	Core from inclined drill holes are oriented on 3, 4.5m or 6m runs (Reflex ACTIII). At the end of each run, the bottom of hole position transferred to the whole drill core run length with a bottom of hole

Criteria	Commentary
Drill sample recovery	Core recovery is systematically recorded from the commencement of drilling against driller's depth blocks in each core tray with data recorded including provided the depth, interval of core recovered, and interval of core recovered.
Logging	<p>Core recoveries were typically 100%, with isolated zones of lower recoveries. Geological logging recorded qualitative descriptions of lithology, alteration, structure (for all core drilled - 21,275m in 27 holes - all holes intersected) and dedicated geotechnical holes, including orientation of key geological features.</p> <p>Geotechnical measurements were recorded including Rock Quality Index, solid core recovery and qualitative rock strength measurements.</p>
Sub-sampling techniques and sample preparation	<p>Magnetic susceptibility measurements were recorded every metre of core.</p> <p>All geological and geotechnical logging was conducted at the Red Chris Mine.</p> <p>Digital data logging was captured, validated and stored in an acQuire database.</p> <p>All drill cores were photographed, prior to cutting and/or sampling the core.</p> <p>Sampling, sample preparation and quality control protocols are consistent across all samples.</p> <p>Core was cut and sampled at the Red Chris Mine core processing facility. Cores were cut into 1m sections and sampled in plastic bags together with pre-numbered sample tags and grouped by lithology. Sample weights typically varied from 5 to 10kg. Samples were cut to a standard style of mineralisation. Drill core samples were freighted by road to Bureau Veritas Commodities Canada Ltd Laboratory, Vancouver (Bureau Veritas) for sample preparation.</p> <p>Sample preparation was conducted at the independent ISO 9001 certified Bureau Veritas Commodities Canada Ltd Laboratory, Vancouver (Bureau Veritas). Samples were crushed to 95% passing 4.75 mm, and the split to obtain up to 1kg of sample (method LM2) to produce a pulped product with the minimum standard of 95%.</p> <p>Duplicate samples were collected from crush and pulp samples at an acceptable level of variability for the material sampled and style of sample.</p> <p>Periodic size checks (1:20) for crush and pulp samples and sample preparation were recorded in the acQuire database.</p> <p>Assaying of drill core samples was conducted at Bureau Veritas. Assays were conducted using a 4-acid digestion followed by ICP-AES/ICP-MS determination. Gold was determined by 50g fire assay with ICP-ES finish (method FA350). Copper was determined by Leco (method TC000) and mercury using aqua regia digestion followed by atomic absorption (method AQ200).</p> <p>Sampling and assaying quality control procedures consisted of including certified reference materials (CRMs), coarse residue and pulp duplicates with each batch (at least one of each).</p> <p>Assays of quality control samples were compared with reference standards and verified as acceptable prior to use of data from analysed batches.</p>
Quality of assay data and laboratory tests	<p>Laboratory quality control data, including laboratory standards, blank and duplicate results are captured in the acQuire database and assessed for accuracy.</p> <p>Due to the limited extent of the drilling program to date, extended quality control programs have not been undertaken, whereby pulped samples will be submitted to an unimpacted laboratory for analysis and extensive re-submission programs.</p> <p>Analysis of the available quality control sample assay results indicates that precision and precision has been achieved and the database contains no anomalies.</p> <p>The assaying techniques and quality control protocols used are consistent with industry standards and used for reporting exploration drilling results.</p>

Section 2: Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	Newcrest Red Chris Mining Limited and the Tahltan N Government, the Tahltan Band and Iskut First Nation Benefit and Co-Management Agreement (IBCA) cove
Exploration done by other parties	All obligations with respect to legislative requirements standing. Conwest Exploration Limited, Great Plains Developm Texasgulf Canada Ltd. (formerly Ecstall Mining Limite Corporation conducted exploration in the areas between Imperial Metals Corp. , acquired the project in 2007 and between 2007 and 2012. The Red Chris Project is located in the Stikine terrane town of Dease Lake.
Geology	Late Triassic sedimentary and volcanic rocks of the S Jurassic (204−198 Ma) diorite to quartz monzon Gold and copper mineralisation at Red Chris consists porphyry-style mineralisation. Mineralisation is hosted main mineral assemblage contains well developed py as vein and breccia infill, and disseminations. The ma potassium feldspar-magnetite wall rock alteration.
Drill hole information	As provided. Significant assay intercepts are reported as (A) length or equal to 20m, with less than 10m of consecutive in exceeding 0.5g/t Au for greater than or equal to 10m, (C) length-weighted averages exceeding 1g/t Au for g consecutive internal dilution; (D) length-weighted ave with less than 10m of consecutive internal dilution; an greater than or equal to 10m, with less than 10m of co intercept calculations.
Data aggregation methods	Significant assay intervals reported represent apparent to confirm the geological model and true width of sign As provided.
Relationship between mineralisation widths and intercept lengths	This is the seventeenth release of Exploration Results dates are 30 January 2020, 11 March 2020, 30 April 2 29 October 2020, 10 December 2020, 28 January 20 July 2021 9 September 2021, 28 October 2021, and 9
Diagrams	Earlier reporting of exploration programs conducted b been reported. Exploration drilling programs are ongo subsequent Newcrest releases.
Balanced reporting	Nil. Further drilling is planned to define the extents of the
Other substantive exploration data	
Further work	
Drillhole data ⁽¹⁾	
Red Chris Project, British Columbia, Canada	Reporting Criteria: Intercepts reported are downhole drill width (not true width) Au >0.1ppm (0.1g/t Au) and minimum 20m downhole width with maximum consecutive internal dilution of 10m. Also highlighted are high grade intervals of Au >0.5ppm (0.5g/t Au), Au >1ppm (1g/t Au), Au > 5ppm (5g/t Au), Au >10ppm (10g/t Au) and minimum 10m downhole width with maximum consecutive internal dilution of 10m. Gold and copper grades are reported to two significant figures. Samples are from core drilling which is HQ or NQ in diameter. Core is photographed and logged by the geology team before being cut. Half core HQ and NQ samples are

prepared for assay and the remaining material is retained in the core farm for future reference. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Total depth (end of hole) is rounded to one decimal place for reporting purposes.

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (ppm)
RC735^^	DD	453568	6396656	1392	1501.8	147	-58	888	1128	240	0.49
							incl.	972	986	14	0.52
							incl.	1012	1114	102	0.82
							incl.	1068	1092	24	1.4
								1148	1170	22	0.33
								1216	1296	80	0.25
RC739^^	DD	453383	6396811	1451	1681.5	146	-57	1088	1478	390	0.63
							incl.	1244	1282	38	1.8
							incl.	1246	1268	22	2.6
							incl.	1302	1372	70	0.68
							incl.	1402	1446	44	2.0
							incl.	1402	1446	44	2.0
RC740	DD	453407	6397178	1465	2142.2	146	-45	1452	1608	156	0.73
							incl.	1522	1608	86	1.2
							incl.	1556	1602	46	1.6
								1738	1994	256	0.32
							incl.	1764	1864	100	0.51
RC745^^	DD	453624	6396544	1403	1364.3	145	-60	728	1094	366	0.45
							incl.	880	944	64	0.64
							incl.	958	1016	58	1.1
							incl.	960	996	36	1.4
RC746^^	DD	453207	6396497	1432	1043.1	150	48	110	130	20	0.11
								552	652	100	0.22
								664	716	52	0.11
								734	766	32	0.11
								956	990	34	0.15
RC747^^	DD	453548	6396527	1403	1268.2	149	-59	706	1012	306	0.28
							incl.	880	926	46	0.77
							incl.	896	916	20	1.1
								1094	1120	26	0.13
RC748	DD	453240	6396830	1461	1790.2	145	-60	1192	1644	452	0.60
							incl.	1224	1250	26	0.51
							incl.	1270	1330	60	0.53
							incl.	1384	1490	106	1.2
							incl.	1386	1484	98	1.3
							incl.	1520	1564	44	1.3
							incl.	1522	1536	14	2.6
RC750	DD	453340	6396870	1456	994.1	146	-58				No Significant Intercept
RC750W	DD	453340	6396870	1456	1843.2	146	-58				Assays Pending
RC751	DD	452126	6396252	1520	1200.6	123	-63				Geotechnical Hole - Not Sa
RC752	DD	451579	6395399	1532	764.7	157	-61	130	158	28	0.16
								232	266	34	0.11
								300	322	22	0.17
								354	754	400	0.33
							incl.	456	476	20	0.81
							incl.	548	606	58	0.58
							incl.	678	690	12	0.58
RC753	DD	452055	6395146	1531	674.6	323	-62				Assays Pending
RC754	DD	453584	6396467	1409	1034.1	150	-57	666	870	204	0.16
							incl.	826	842	16	0.55
								884	914	30	0.13
RC755	DD	452579	6396361	1491	1218	134	-76				Geotechnical Hole - Not Sa
RC765	DD	451551	6395471	1522	1059.1	156	-65				Assays Pending
RC769	DD	451939	6395148	1539	638.5	323	-56				Assays Pending

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (ppm)
RC770	DD	452705	6395448	1482	1128.7	357	-64				Assays Pending
RC771	DD	452697	6396522	1463	1226.5	142	-66				Geotechnical Hole - Not Sa
RC772	DD	453128	6396855	1462	100	360	-90				Geotechnical Hole - Not Sa
RC773	DD	453651	6396726	1379	1634.5	148	-58				Assays Pending
RC774	DD	453109	6396596	1443	1556.1	143	-62				Assays Pending
RC775	DD	451965	6395069	1537	1052.3	328	-68				Assays Pending
RC776	DD	451495	6395271	1530	649.9	148	-59				Assays Pending
RC777	DD	453542	6396786	1377	1640.7	149	-58				Assays Pending
RC778	DD	451495	6395271	1530	809.1	149	-70				Assays Pending
RC779#	DD	453419	6396887	1442	1631	144	-56				Assays Pending
RC780	DD	453145	6396835	1460	530.4	252	-90				Geotechnical Hole - Not Sa
RC781	DD	452126	6396252	1519	1136.6	173	-77				Geotechnical Hole - Not Sa
RC782	DD	451506	6395556	1516	1103.3	159	-66				Assays Pending
RC783	DD	451557	6395465	1529	1529.1	77	-54				Geotechnical Hole - Not Sa
RC784	DD	452698	6395444	1482	1056.5	339	-71				Geotechnical Hole - Not Sa
RC785#	DD	453666	6396947	1370	1118.1	149	-58				Assays Pending
RC786#	DD	453717	6396634	1396	800	148	-59				Assays Pending
RC787#	DD	453125	6396510	1444	793.8	152	-50				Assays Pending

#drilling in progress. **partial intercept, assays pending. ^updated intercept ^^previously reported intercept

Figure 7. Schematic plan view map of the East Ridge showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases). 0.3 g/t Au, 1 g/t Au, 0.3% Cu and 1% Cu shell projections generated from a Leapfrog™ model.

To view an enhanced version of Figure 7, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_009full.jpg

Figure 8. Schematic cross section of RC746 and RC774 (Section Line 33N - as shown on Figure 7) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.1 g/t Au, 0.5 g/t Au and 1 g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 8, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_010full.jpg

Figure 9. Schematic cross section of RC748 (Section Line 35N - as shown on Figure 7) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.1g/t, 0.5g/t Au and 1g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 9, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_011full.jpg

Figure 10. Schematic cross section of RC739, RC747 and RC754 (Section Line 36N - as shown on Figure 7) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.1g/t, 0.5g/t Au and 1g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 10, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_012full.jpg

Figure 11. Schematic cross section of RC735 and RC745 (Section Line 37N - as shown on Figure 7) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.1g/t, 0.5g/t Au and 1g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 11, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_013full.jpg

Figure 12. Schematic cross section of RC740 (Section Line 38N - as shown on Figure 7) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.1g/t, 0.5g/t Au and 1g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 12, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_014full.jpg

Figure 13. Schematic plan view map of the Main Zone showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases). 0.3 g/t Au, 1 g/t Au, 0.3% Cu and 1% Cu shell projections generated from a Leapfrog™ model.

To view an enhanced version of Figure 13, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_015full.jpg

Figure 14. Schematic cross section of RC740 (Section Line 13N - as shown on Figure 13) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.1g/t, 0.5g/t Au and 1g/t Au shell projections generated from Leapfrog™ model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 14, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_016full.jpg

Appendix 2

Havieron Project (Greatland Gold Plc - Joint Venture Agreement): JORC Table 1 Section 1: Sampling Techniques and Data

Criteria

Commentary

Sampling techniques

Core samples are obtained from core drilling in Proterozoic basement rocks. A core was drilled on a 6m run. Core was cut using an automated core cutter to 1m intervals with breaks for major geological changes. Sampling intervals and sequences were not sampled.

Permian Paterson Formation cover sequence was drilled using mud rotary drilling to approximately 420m vertically below surface. Steel casings were used with a pre-collar.

Drilling techniques

Core drilling was advanced from the base of the cover sequence with a 3m configuration.

Drill sample recovery

Core from inclined drill holes is oriented on 3m and 6m runs using a core orientation system (ACTIII). At the end of each run, the bottom of hole position is marked with a reference line to the whole drill core run length with a bottom of hole reference line. Core recovery is systematically recorded from the commencement of each run against driller's depth blocks in each core tray with data recorded in the acQuire database. This provided the depth, interval of core recovered, and interval of core recovered.

Core recoveries were typically 100%, with isolated zones of lower recovery.

Cover sequence drilling by the mud-rotary drilling did not yield recoveries greater than 100%. Geological logging recorded qualitative descriptions of lithology, alteration, and structure (for all core drilled - 13,183 m for 21 drill holes, all intersected the cover sequence of key geological features).

Geotechnical measurements were recorded including Rock Quality Index, solid core recovery and qualitative rock strength measurements.

Logging

Magnetic susceptibility measurements were recorded every metre. The interval of recording was determined at site on whole core samples.

All geological and geotechnical logging was conducted at the Havieron Project.

Digital data logging was captured on diamond drill core intervals on the acQuire database.

All drill cores were photographed, prior to cutting and/or sampling to document the core.

The logging is of sufficient quality to support Mineral Resource estimation. Sampling, sample preparation and quality control protocols are consistent with the core sampled.

Core was cut and sampled at the Havieron core processing facility. Core samples 2.0 m were collected in pre-numbered calico bags and grouped in sample sets. Sample weights typically varied from 0.5 to 8kg. Sample sizes are determined by mineralisation. Drill core samples were freighted by air and road to the processing facility.

Sub-sampling techniques and sample preparation

Sample preparation was conducted at the independent ISO17025 (Intertek). Samples were dried at 105°C, and crushed to 95% passing a 2mm screen. A 3kg sub-sample, which was pulverised (using LM5) to produce a product of 95% passing 106µm. Routine grind size analysis is conducted on the sample.

Duplicate samples were collected from crush and pulp samples at an acceptable level of variability for the material sampled and style of sample.

Periodic size checks (1:20) for crush and pulp samples and sample sets are recorded in the acQuire database.

Criteria	Commentary
	Assaying of drill core samples was conducted at Intertek. All samples were acid digested followed by ICP-AES/ICP-MS determination (methane) to provide a total assay for copper. Gold analyses were determined by FA50N/AA, which is considered to provide a total assay for gold.
Quality of assay data and laboratory tests	<p>Sampling and assaying quality control procedures consisted of including (CRMs), coarse residue and pulp duplicates with each batch (at least one of each).</p> <p>Assays of quality control samples were compared with reference standards and found to be acceptable prior to use of data from analysed batches.</p> <p>Laboratory quality control data, including laboratory standards, blank and duplicate samples, are captured in the acQuire database and assessed for accuracy.</p> <p>Extended quality control programs including pulp samples submitted with more extensive re-submission programs have been completed.</p> <p>Analysis of the available quality control sample assay results indicates that acceptable precision and accuracy has been achieved and the database contains no anomalous data that has been manipulated.</p> <p>The assaying techniques and quality control protocols used are considered to be appropriate and suitable for reporting exploration drilling results.</p> <p>Sampling intervals defined by the geologist are electronically assigned to the core cutting. Corresponding sample numbers matching pre-labelled core samples are assigned to each core cutting interval.</p> <p>All sampling and assay information were stored in a secure acQuire database.</p>
Verification of sampling and assaying	<p>Electronically generated sample submission forms providing the sample ID, sample type, sample length and assay value are used for each submission to the laboratory. Assay results from the laboratory are loaded directly into the acQuire database.</p> <p>Assessment of reported significant assay intervals was verified by the geologist and assessment of high resolution core photography. The verification of significant assay intervals was completed by company personnel and the Competent Person/Qualified Person.</p> <p>No adjustments are made to assay data, and no twinned holes have been identified.</p> <p>There are no currently known drilling, sampling, recovery, or other factors that would affect the accuracy or reliability of the data.</p> <p>Drill collar locations were surveyed using a differential GPS with Global Positioning System (GPS) and all drill holes reported.</p>
Location of data points	<p>Drill rig alignment was attained using an electronic azimuth aligner and surveying equipment. Drill holes were surveyed in 100m intervals in the cover sequence, and every 6 to 30m in diamond drill holes. Single shot surveys were completed using a single shot (Axis Mining Champ Gyro). The single shot surveys have been converted to surface (Axis Mining Champ) along with a selection of drill holes. Drill holes were surveyed using a magnetic contactor using a DeviGyro tool - confirming sufficient accuracy for the survey.</p> <p>A LIDAR survey was completed over the project area in Nov 2019 to create a topographic model for the project with a spatial accuracy of +/- 0.1m. The topography is generally low relief to flat, elevation within the dune area is approximately 100m above sea level. The project is located in the Australian Height Datum (AHD) steepening to the southeast. All coordinates are in the Geocentric Datum of Australian (GDA20 Zone 51). All relative depths are in metres above sea level. Within the South-East Crescent and Breccia zone drill hole spacing is approximately 100m to 200m within the resource extents. Outside the initial resource boundary drill holes are spaced in lateral extent within the breccia zone over an area of ~2km². The degree of geological and grade continuity is high.</p>
Data spacing and distribution	<p>Significant assay intercepts remain open. Further drilling is required to delineate the defined mineralisation. No sample compositing is applied to samples.</p> <p>Drilling intersects mineralisation at various angles.</p>

Criteria	Commentary
Orientation of data in relation to geological structure	<p>Drill holes exploring the extents of the Havieron mineral system in siliciclastic sedimentary facies, mineralised breccia and sub-vertical has been interpreted from historic and Newcrest drill holes.</p> <p>Variable brecciation, alteration and sulphide mineralisation is observed 650m x 350m trending in a north west orientation and over 1000m.</p> <p>The subvertical southeast high grade arcuate crescent sulphide zone has been defined over a strike length of up to 550m, and extended cover.</p> <p>Drilling direction is oriented to intersect the steeply dipping high-grade intersection angle of greater than 40 degrees. The drilled length of less than true width of mineralisation.</p> <p>The security of samples is controlled by tracking samples from drill rig to laboratory.</p> <p>Drill core was delivered from the drill rig to the Havieron core yard for geotechnical logging, core processing was completed by Newcrest.</p> <p>High resolution core photography and cutting of drill core was undertaken at the laboratory facilities.</p>
Sample security	<p>Samples were freighted in sealed bags by air and road to the Laboratory by project personnel and owner representatives. Sample numbers are generated directly from the sample tracking system onto pre-numbered calico bags.</p> <p>Verification of sample numbers and identification is conducted by the laboratory using the sample receipt advise issued to Newcrest.</p> <p>Details of all sample movement are recorded in a database table. Details of analytical suite requested are recorded with the dispatch of sample. Discrepancies logged at the receipt of samples into the analytical suite. Internal reviews of core handling, sample preparation and assays are conducted on a regular basis by both project personnel and owner representatives.</p>
Audits or reviews	<p>In the Competent Person's opinion, the sample preparation, security and reporting of results are consistent with current industry standards and are entirely appropriate for the mineralisation identified and will be appropriate for use in the reporting of Resource estimates. There are no identified drilling, sampling or reporting issues in respect of the adequacy and reliability of the results of the drilling programme in place.</p>

Section 2: Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	<p>The Havieron Project is entirely contained within mineral tenement M45/1287. The Project is held by Greatland Pty Ltd and Newcrest Operations Limited. The Project is held under a Joint Venture Agreement (effective 30 November 2020) and Farm-In Agreement (effective 12 October 2021). Greatland Gold plc. Newcrest is the Manager of the Project. Under the Joint Venture Agreement effective 12 October 2021, Newcrest is entitled to earn an additional 30% interest in the Project, up to a maximum joint venture interest of 70% (Greatland Gold 30%). Newcrest and Greatland Gold will negotiate in good faith to determine fair market value and in December 2021, Newcrest will be entitled to terminate the Joint Venture Agreement under the joint venture process to seek to agree to a sale of the Project to a third party.</p> <p>Newcrest and WDLAC are parties to an ILUA which regulates the current operations at Telfer and its activities within a 6km radius of the Project. The parties have agreed that the Project will be developed by the Joint Venture Participants (Newcrest and Greatland Gold).</p> <p>The mining tenement M45/1287 wholly replaces the 100% interest in the exploration tenement on which the Havieron Project is located. Newcrest has no obligations with respect to legislative requirements including those relating to the environmental impact statement standing for prior exploration tenement E45/4701.</p>

Criteria

Exploration done by other parties

Commentary

Newcrest completed six core holes in the vicinity of the project. The project completed drill targeting and drilling of nine Reverse Circulation (RC) holes for approximately 6,800m in 2018. Results of drilling programs have not been reported on the Greatland Gold website.

Geology

Drill hole Information

Data aggregation methods

Relationship between mineralisation widths and intercept lengths

Diagrams

Balanced reporting

Other substantive exploration data

Further work

Drillhole data⁽¹⁾

Havieron Project, Paterson Province, Western Australia

Reporting Criteria: Intercepts reported are downhole drill width (not true width) Au >0.20ppm (0.2g/t Au) and minimum 20m downhole width with maximum consecutive internal dilution of 10m. Average grades are based on length-weighting of samples grades. Also highlighted are high grade intervals of Au >1.0ppm (1g/t Au) and minimum 10m downhole width with maximum consecutive internal dilution of 5m, and intervals of >30g/t which are greater or equal to 30 gram metres (Au_ppm x length) are tabled. Gold and copper grades are reported to two significant figures, the downhole lengths are rounded to 0.1m which may cause some apparent discrepancies in interval widths. Samples are from core drilling which is PQ, HQ or NQ in diameter. Core is photographed and logged by the geology team before being cut. Half core PQ, HQ and NQ samples are prepared for assay and the remaining material is retained in the core farm for future reference. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Total depth (end of hole) is rounded to one decimal place for reporting purposes. Collars denoted with a * show partial results, with further significant assays to be reported in subsequent exploration updates.

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au (g/t)	Ag (g/t)	Pb (g/t)	Zn (g/t)	Co (g/t)	Mn (g/t)	As (g/t)	Bi (g/t)	Te (g/t)	W (g/t)	Mo (g/t)	Sn (g/t)	Ge (g/t)	GeS (g/t)	GeSe (g/t)	GeTe (g/t)	GeSb (g/t)	GeSbTe (g/t)	GeSbSe (g/t)	GeSbTeSe (g/t)	GeSbTeSe (g/t)
HAD053W5 ^{**}	MR-DD	463846	7598077	256	1207	132	-61	568.8	589.8	21	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au
								636.2	718.2	82	0
								777.3	802.6	25.3	0
								886.2	927.6	41.4	0
								957.7	958.5	0.8	0
								1041.4	1161.1	119.7	0
							Incl.	1041.4	1052	10.6	5
							Incl.	1119	1132.5	13.5	4
HAD053W6^^	MR-DD	463845	7598075	256	1302.4	132	-61	609.3	722	112.7	0
								958.4	981.2	22.8	0
								1008.4	1054.8	46.4	0
								1065	1229.3	164.3	0
							Incl.	1065.7	1080	14.3	9
							Incl.	1072	1074	2	7
							Incl.	1086	1098.8	12.8	2
							Incl.	1165.1	1177.7	12.6	2
HAD058W1	MR-DD	463718	7597439	260	1325.6	43	-50	823	883	60	0
								968	990.7	22.7	0
							Incl.	968	979.7	11.7	0
HAD061W1^^	MR-DD	464367	7598038	257	1010.1	206	-61	557.6	589.5	31.9	0
								774.6	842.9	68.3	0
								856.3	1001	144.7	0
HAD061W2^^	MR-DD	464367	7598038	257	997.3	206	-61	535.1	593.3	58.2	0
								622.4	676.6	54.2	0
								686.8	729.2	42.4	0
								824.8	847.4	22.6	0
								868.4	936.4	68	0
							Incl.	886.6	899.6	13	0
HAD061W3^^	MR-DD	464367	7598038	257	540	206	-61				Hole Aband
HAD061W4^^	MR-DD	464368	7598039	257	1082.4	206	-61	615.8	644	28.2	0
								708.4	741	32.6	0
								884.1	912	27.9	0
								925.4	1053.5	128.1	0
HAD068W4^^	MR-DD	464547	7597081	261	1170.1	323	-55	1082	1129	47	0
								1140.7	1168.8	28.1	0
HAD076W1^^	MR-DD	464373	7598130	257	1122.3	227	-55	613	633.8	20.8	0
								689.2	730.3	41.1	0
								742	792.4	50.4	0
							Incl.	900.2	900.5	0.3	1
								964.4	1025.1	60.7	0
HAD084W3	MR-DD	463271	7597843	256	1311	83	-65	926	947.1	21.1	0
								1076	1108.2	32.2	0
HAD085W1^^	MR-DD	463488	7598056	255	1580.4	111	-63	1434.9	1438	3.1	0
								1466	1496	30	0
								1507	1568	61	0
							Incl.	1527.8	1539	11.2	5
								1531.9	1532.7	0.8	0
HAD085W2^^	MR-DD	463488	7598056	255	1397.1	112	-63	607.6	636.5	28.9	0
								614.5	628.3	13.8	0
								648	771.5	123.5	0
								813.6	814.8	1.2	0
								940.4	967.9	27.5	0
								1066.8	1120.2	53.4	0
								1134	1163.2	29.2	0
								1256.2	1333.4	77.2	0
							Incl.	1256.2	1269.2	13	0
HAD085W3^^	MR-DD	463489	7598058	255	1267.8	111	-63				Hole Aband
HAD085W4	MR-DD	463489	7598058	255	1534.2	111	-63	1130.8	1245	114.2	0

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au					
											Incl.	1203.7	1204.6	0.9	1	
												1272.8	1345.3	72.5	0	
												1400.6	1447	46.4		
												Incl.	1402.1	1406	3.9	
												1433.2	1434.7	1.5		
HAD085W5	MR-DD	463489	7598058	255	1435.1	111	-63								Assays	Per
HAD086W2	MR-DD	464623	7598148	258	1629.6	225	-65	1298	1331	33					0	
												1605.4	1627.3	21.9		
HAD086W3^^	MR-DD	464623	7598148	258	1624	225	-65	1373	1398.7	25.7					2	
												Incl.	1373.8	1375	1.2	
												1412	1456.7	44.7		
												Incl.	1421	1441.2	20.2	
												Incl.	1421	1424.9	3.9	
												Incl.	1431.7	1433.5	1.8	
												1525	1573	48		
												Incl.	1538.1	1565	26.9	
HAD086W4^^	MR-DD	464623	7598148	258	2115.3	225	-65	1404.3	1506.6	102.3					1	
												Incl.	1437.3	1438.8	1.5	
												1602	1638	36		
HAD089W4	MR-DD	464300	7597747	258	1489.9	290	-61	642.9	677.6	34.7					Assays	Per
HAD104**	MR-DD	463522	7597782	257	1913.6	87	-63	792.1	819.9	27.8					0	
												835	855.1	20.1		
												866.9	895.3	28.4		
												956.2	1092.6	136.4		
												1267	1459.8			
												1546.5	1609	62.5		
												Incl.	1554.6	1604	49.4	
												Incl.	1566.6	1567.6	1.0	
												1717	1795	78		
												1795	1913.6			
HAD133W4^^	MR-DD	464071	7598315	257	1468.5	171	-65	1153.2	1181.4	28.2					Assays	Per
												1329.2	1399	69.8		
												Incl.	1334	1344.1	10.1	
												Incl.	1339.8	1341	1.2	
												Incl.	1368.4	1392.9	24.5	
HAD133W5^^	MR-DD	464071	7598315	257	1543.9	171	-65	1339.3	1381	41.7					0	
												1418.6	1529	110.4		
												Incl.	1460.5	1523.3	62.8	
												Incl.	1478.2	1478.5	0.3	
HAD133W6**	MR-DD	464072	7598317	257	1639.5	171	-65	1367	1413	46					0	
												1424.6	1592.7	168.1		
												Incl.	1425.9	1469	43.1	
												Incl.	1441	1442	1.0	
												Incl.	1531.8	1550	18.2	
												Incl.	1555.5	1567	11.5	
												1595.4	1639.5			
HAD133W7	MR-DD	464072	7598317	257	1692.5	171	-65								Assays	Per
HAD141W1	MR-DD	463362	7597504	264	1985.9	27	-65	1195.6	1248	52.4					0	
HAD145	MR-DD	463201	7597816	256	1824.5	75	-65								Assays	Per
HAD146	MR-DD	463451	7597873	253	1121.7	68	-62	771.7	826	54.3					0	
HAD146W1	MR-DD	463451	7597873	253	1189.4	69	-60			40.3					Assays	Per
HAD148^^	MR-DD	464317	7598100	257	990.7	222	-55	574.1	617.8	43.7					0	
												733.4	760.1	26.7		
												781.2	813.2	32		
												829.3	914.6	85.3		

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au
HAD148W1^^	MR-DD	464317	7598100	257	1008.5	222	-55	729	784.4	55.4	0
								807.8	897.1	89.3	
							Incl.	839.3	840.1	0.8	
							Incl.	867.2	883.1	15.9	
							Incl.	872.5	874.5	2.0	
								915.4	952	36.6	
								967.3	996	28.7	
							Incl.	967.3	978.9	11.6	
HAD148W2^^	MR-DD	464317	7598100	257	1049.3	222	-55	576	623.8	47.8	0
								680	681.1	1.1	
								800.2	853.3	53.1	0
								867	900	33	
							Incl.	874.4	875	0.6	
								938.1	973.5	35.4	
							Incl.	955.9	957.8	2	
								984.5	1005.9	21.4	
HAD149^^	MR-DD	464243	7598106	256	1282.7	209	-60	807.6	863.9	56.3	0
								881.3	913.8	32.5	
								952.6	992.9	40.3	
HAD149W1^^	MR-DD	464243	7598106	256	1002.3	209	-60	572	653	81	0
								750.4	773	22.6	
								819	861.2	42.2	
								875.5	932	56.5	
								950.5	952	1.5	
HAD149W2^^	MR-DD	464245	7598108	256	1283.3	209	-60	510.5	545	34.5	0
								663.9	720	56.1	
								841.3	908	66.7	
								919.5	964.6	45.1	
							Incl.	961.7	962.7	1.0	
HAD150^^	MR-DD	464078	7598228	256	1128.7	172	-58	590.8	647.8	57	0
								663	756.7	93.7	
								784.2	832.1	47.9	
								885.1	972	86.9	
								985.8	1015.6	29.8	
							Incl.	988.8	989.1	0.3	
HAD150W1^^	MR-DD	464078	7598228	256	1155	172	-58	658.8	699.4	40.6	0
								710	737.9	27.9	
								805.7	856.5	50.8	
								909	1049	140	
							Incl.	952.4	955.1	2.7	
							Incl.	966	979	13	
							Incl.	974.7	975.1	0.4	
							Incl.	986	998.9	12.9	
							Incl.	1023.6	1034.3	10.7	
								1061	1093.1	32.1	
HAD150W2^^	MR-DD	464080	7598231	256	1230.1	172	-58	767.6	813.2	45.6	0
								Incl.	802	802.8	0.8
									940.9	983	42.1
								Incl.	975.7	976.8	1.1
									996.2	1110	113.8
								Incl.	1011.4	1023.3	11.9
								Incl.	1021	1022	1
								incl.	1035.8	1050	14.2
								Incl.	1035.8	1043	7.2
HAD151^^	MR-DD	463591	7597377	263	794.3	48	-55	708.6	794.3	85.7	0
HAD151W1^^	MR-DD	463591	7597377	263	808	48	-55	692.2	772	79.8	0
									705	719	14

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth	Dip	From (m)	To (m)	Interval (m)	Au
NOR001	MR-DD	464122	7599991	264	1248.4	90	-70				No Significant
ZIP001	MR-DD	463055	7599813	258	900.8	45	-70				Assays Pending
ZIP002	MR-DD	463606	7599618	264	883	45	-75				Assays Pending

#drilling in progress. **partial intercept, assays pending. ^updated intercept. ^^previously reported intercept.

Figure 15. Schematic plan view map showing drill hole locations and significant intercepts reported in this release superimposed on the interpreted geology. Previously reported holes are not shown for the sake of clarity. Note some holes and results appear on multiple sections due to the sections orientation and sections overlap.

To view an enhanced version of Figure 15, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_017full.jpg

Figure 16. Schematic cross section of geology and significant new drillhole intercepts (looking northwest, Section Line S1, +/-50m section width, as shown in Figure 15). Due to section window size and orientation holes may appear on multiple sections. This diagram highlights >100gram metres intersections drilled during the period which are >1g/t Au.

To view an enhanced version of Figure 16, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_018full.jpg

Figure 17. Schematic cross section of geology and significant new drillhole intercepts (looking northwest, Section Line S2, +/-50m section width, as shown in Figure 15). Due to section window size and orientation holes may appear on multiple sections. This diagram highlights >100gram metres intersections drilled during the period which are >1g/t Au.

To view an enhanced version of Figure 17, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_019full.jpg

Figure 18. Schematic cross section of geology and significant new drillhole intercepts (looking northeast, Section Line S3, +/-50m section width, as shown in Figure 15). Due to section window size and orientation holes may appear on multiple sections. This diagram highlights >100gram metres intersections drilled during the period which are >1g/t Au.

To view an enhanced version of Figure 18, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_020full.jpg

Figure 19. Schematic cross section of geology and significant new drillhole intercepts (looking northeast, Section Line S4, +/-50m section width, as shown in Figure 15). Due to section window size and orientation holes may appear on multiple sections. This diagram highlights >100gram metres intersections drilled during the quarter which are >1g/t Au.

To view an enhanced version of Figure 19, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_021full.jpg

Figure 20. Schematic cross section of geology and significant new drillhole intercepts (looking northeast, Section Line S5, +/-50m section width, as shown in Figure 15). Due to section window size and orientation holes may appear on multiple sections. This diagram highlights >100gram metres intersections drilled during the quarter which are >1g/t Au.

To view an enhanced version of Figure 20, please visit:

https://orders.newsfilecorp.com/files/7614/111915_5aa19461c4ce684c_022full.jpg

Forward Looking Statements

This document includes forward looking statements and forward looking information within the meaning of securities laws of applicable jurisdictions. Forward looking statements can generally be identified by the use of words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "believe", "continue", "objectives", "targets", "outlook" and "guidance", or other similar words and may include, without limitation, statements regarding estimated reserves and resources, certain plans, strategies, aspirations and objectives of management, anticipated production, study or construction dates, expected costs, cash flow or production outputs and anticipated productive lives of projects and mines. Newcrest continues to distinguish between outlook and guidance. Guidance statements relate to the current financial year. Outlook statements relate to years subsequent to the current financial year.

These forward looking statements involve known and unknown risks, uncertainties and other factors that may cause Newcrest's actual results, performance and achievements or industry results to differ materially from any future results, performance or achievements, or industry results, expressed or implied by these forward-looking statements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which Newcrest operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation. For further information as to the risks which may impact on Newcrest's results and performance, please see the risk factors included in the Operating and Financial Review included in the Appendix 4E and Financial Report for the year ended 30 June 2021 and the Annual Information Form dated 6 December 2021 which are available to view at www.asx.com.au under the code "NCM" and on Newcrest's SEDAR profile.

Forward looking statements are based on Newcrest's good faith assumptions as to the financial, market, regulatory and other relevant environments that will exist and affect Newcrest's business and operations in the future. Newcrest does not give any assurance that the assumptions will prove to be correct. There may be other factors that could cause actual results or events not to be as anticipated, and many events are beyond the reasonable control of Newcrest. Readers are cautioned not to place undue reliance on forward looking statements, particularly in the current economic climate with the significant volatility, uncertainty and disruption caused by the COVID-19 pandemic. Forward looking statements in this document speak only at the date of issue. Except as required by applicable laws or regulations, Newcrest does not undertake any obligation to publicly update or revise any of the forward looking statements or to advise of any change in assumptions on which any such statement is based.

Ore Reserves and Mineral Resources Reporting Requirements

As an Australian Company with securities listed on the Australian Securities Exchange (ASX), Newcrest is subject to Australian disclosure requirements and standards, including the requirements of the Corporations Act 2001 and the ASX. Investors should note that it is a requirement of the ASX listing rules that the reporting of Ore Reserves and Mineral Resources in Australia is in accordance with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code) and that Newcrest's Ore Reserve and Mineral Resource estimates comply with the JORC Code.

Newcrest is also subject to certain Canadian disclosure requirements and standards, as a result of its secondary listing on the Toronto Stock Exchange (TSX), including the requirements of National Instrument 43-101 (NI 43-101). Investors should note that it is a requirement of Canadian securities law that the reporting of Mineral Reserves and Mineral Resources in Canada and the disclosure of scientific and technical information concerning a mineral project on a property material to Newcrest comply with NI 43-101. Newcrest's material properties are currently Cadia, Lihir, Red Chris and Wafi-Golpu. Copies of the NI 43-101 Reports for Cadia, Lihir and Wafi-Golpu, which were released on 14 October 2020 and the NI43-101 Report for Red Chris which was released on 29 November 2021, are available at www.newcrest.com.au and on Newcrest's SEDAR profile.

Competent Person's Statement

The information in this document that relates to Exploration Targets, Exploration Results, and related scientific and technical information, is based on and fairly represents information compiled by Mr F. MacCorquodale. Mr MacCorquodale is the General Manager - Greenfields Exploration and a full-time employee of [Newcrest Mining Ltd.](#). He is a shareholder in [Newcrest Mining Ltd.](#) and is entitled to participate in Newcrest's executive equity long term incentive plan, details of which are included in Newcrest's 2020 Remuneration Report. He is a Member of the Australian Institute of Geoscientists. Mr MacCorquodale has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code and as a Qualified Person under NI 43-101. Mr MacCorquodale approves the disclosure of scientific and technical information contained in this document and consents to the inclusion of material of the matters based on his information in the form and context in which it appears.

Authorised by the Newcrest Disclosure Committee

For further information please contact

Investor Enquiries

Tom Dixon
+61 3 9522 5570
+61 450 541 389
Tom.Dixon@newcrest.com.au

North American Investor Enquiries

Ryan Skaleskog
+1 866 396 0242
+61 403 435 222
Ryan.Skaleskog@newcrest.com.au

Media Enquiries

Tim Salathiel
+61 3 9522 4263
+61 407 885 272
Tim.Salathiel@newcrest.com.au

This information is available on our website at www.newcrest.com

1 # drilling in progress ** partial intercept, assays pending ^ updated intercept or ^^ previously reported.

2 # drilling in progress ** partial intercept, assays pending ^ updated intercept or ^^ previously reported.

3 # drilling in progress ** partial intercept, assays pending ^ updated intercept or ^^ previously reported.

⁴ Newcrest can elect to extend this period by up to 2 years.

To view the source version of this press release, please visit <https://www.newsfilecorp.com/release/111915>

Dieser Artikel stammt von [Rohstoff-Welt.de](https://www.rohstoff-welt.de)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/405646--Newcrest-Exploration-Quarterly-Report.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinien](#).