Fortuna drills 16.5 g/t gold over 6.3 meters at Séguéla and provides exploration update

09.12.2021 | GlobeNewswire

VANCOUVER, Dec. 09, 2021 - Fortuna Silver Mines Inc. (NYSE: FSM) (TSX: FVI) is pleased to provide an overview of its exploration programs in Latin America and West Africa.

Paul Weedon, Senior Vice President of Exploration, commented, "With 12 drill rigs turning across the portfolio, the steady pace of exploration across all our major properties continues to deliver very encouraging results." Mr. Weedon continued, "These include highlights such as 16.5 g/t gold over 6.3 meters from drill hole SGRC1366 from the growing Sunbird Prospect at S?gu?la, and the 0.6 g/t gold and 0.18% copper over an estimated true width of 68 meters from surface intersected in drill hole ARD046 adjacent to the Arizaro Project, through to one of the deepest holes drilled at Caylloma, drill hole ANIM087921, returning 93 g/t silver, 4.83% lead and 7.81% zinc over an estimated true width of 20.48 meters from nearly 900 meters below surface and where it remains open."

S?gu?la gold Project, C?te d'Ivoire

Sunbird Prospect assay highlights include:

- SGRD1365: 9.4 g/t gold over an estimated true width of 7 meters from 197 meters
- SGRD1366: 17.5 g/t gold over an estimated true width of 6.3 meters from 205 meters
- SGRD1367: 14.8 g/t gold over an estimated true width of 1.4 meters from 214 meters and 52.2 g/t gold over an estimated true width of 1.4 meters from 242 meters
- SGRD1368: 3.4 g/t gold over an estimated true width of 3.5 meters from 269 meters
- SGRD1370: 8.0 g/t gold over an estimated true width of 8.4 meters from 241 meters
- SGRD1376: 6.5 g/t gold over an estimated true width of 10.5 meters from 143 meters

Exploration drilling at the S?gu?la gold Project continues to advance the Sunbird Prospect with a recently completed 13-hole, 3,059-meter program testing the continuity and tenor of mineralization at depth and along strike to the south. Drilling at depth was designed to test projections of previous high-grade results a further 100 to 150 meters down plunge in the central zone and help refine the understanding of the structural controls (refer to Fortuna news release dated September 7, 2021).

Drilling to the south extended drill defined mineralization a further 50 meters, helping refine the structural controls, with this area remaining open along strike and down-plunge. The geometry and style of mineralization is consistent with that seen at the Koula and Ancien deposits, located 1.5 kilometers and 5 kilometers to the north and south respectively, both of which are hosted in similar structural settings within the same lithology package.

Geological logging of the drill core identified numerous intervals containing 5 to greater than 20 visible gold specks of up to 2-millimeter diameter, with the characteristics of the mineralization consistent with previous drilling at Sunbird. Three of the six holes for which assays are pending, refer to Appendix 1, also recorded between 5 and 10 visible gold specks in the mineralized intervals; refer to Figure 1.

Figure 1: Sunbird Prospect long-section looking west showing recent drilling results

https://www.globenewswire.com/NewsRoom/AttachmentNg/5d4f86e2-27ab-4ae4-8bc1-333cb4ed4517

The mineralization remains open at depth and further drilling is planned in 2022 to further define the extent of the mineralization. Results received to date for this program are listed in Appendix 1.

10.11.2025 Seite 1/14

Arizaro gold Project, Lindero Mine, Argentina

Central Zone assay highlights include:

- ARD45: 0.47 g/t Au and 0.16% Cu over an estimated true width of 73 meters from 44 meter downhole
- ARD46: 0.61 g/t Au and 0.18% Cu over an estimated true width of 68 meters from surface; ended in mineralization at 200-meter downhole

The Arizaro Project is located within the Lindero mining concession, 3.2 kilometers southeast of the Lindero Mine. Previous exploration and drilling identified near surface porphyry-style gold-copper mineralization hosted in magnetite and biotite-rich breccia zones and in associated stockwork veins with two dominant structural trends (refer to Fortuna release dated February 14, 2019).

A 1,178-meter, 6-hole drilling program testing a reinterpretation of key mineralizing features across the Central and SW Targets, located approximately 200 meters and 350 meters, respectively, to the west south-west of the main Arizaro mineralization was completed in August. Two holes testing the Central Target successfully intersected extensive zones of biotite-rich brecciation and north-east trending sheeted quartz veining with associated pyrite and visible copper mineralization. Subsequent logging of drill hole ARD46 showed it was drilled oblique to the interpreted dominant quartz vein orientation with the hole ending in mineralization at 200 meters downhole for a true width of 68 meters; refer to Figure 2.

Figure 2: Arizaro Project plan view with selected highlights

https://www.globenewswire.com/NewsRoom/AttachmentNg/9296ceaa-5dd1-4fdc-93fa-b44c3880e7b7

Additional drilling and surface trenching is planned during December to further define the extent of the mineralization. Results received to date for this program are listed in Appendix 2.

San Jose Mine, Mexico

Assay highlights include:

- SJOM1053 (VMZ): 290 g/t Ag and 2.00 g/t Au over an estimated true width of 1.5 meters
- SJOM1088 (Magdalena): 245 g/t Ag and 1.41 g/t Au over an estimated true width of 4.6 meters
- SJOM1091 (Magdalena): 506 g/t Ag and 2.61 g/t Au over an estimated true width of 1.7 meters
- SJOM1103 (San Ignacio): 209 g/t Ag and 1.47 g/t Au over an estimated true width of 1.1 meters
- SJOM1105 (Magdalena): 302 g/t Ag and 0.77 g/t Au over an estimated true width of 1.8 meters including 1.010 g/t Ag over 0.5 meters

Step-out exploration drilling from underground platforms ahead of production at San Jose has continued to define continuity of key mineralized structures, with 25,064 meters drilled in 59 holes since March 2021, targeting the Bonanza Hanging wall (Bhw), Trinidad Norte and Victoria mineralized zone (VMZ) structures; refer to Figure 3, Figure 4 and Figure 5. In addition to the underground drilling, testing of two target zones to the north and south of the mine was successful in identifying additional mineralized structures with drilling continuing.

Development of underground drill platforms and associated infrastructure also continued with the establishment of the first drill stations which will enable testing of the projected northern strike extensions of the Trinidad system, including the untested down-dip projection of a surface silicified outcrop.

Refer to Appendix 3 for details of the additional San Jose drill holes completed since March 2021.

Figure 3: Bonanza Hanging wall long-section looking west showing recent drilling results

10.11.2025 Seite 2/14

https://www.globenewswire.com/NewsRoom/AttachmentNg/21fec8a9-1288-4409-97cb-6617f02e97b8

Figure 4: Trinidad Norte long-section looking west showing recent drilling results

https://www.globenewswire.com/NewsRoom/AttachmentNg/ce364473-75cc-4a31-9709-9f9755642ca3

Figure 5: Victoria mineralized zone (VMZ) long-section looking west showing recent drilling results

https://www.globenewswire.com/NewsRoom/AttachmentNg/9ca31cc8-0786-4db2-84e8-f665907260a5

Yaramoko Mine, Burkina Faso

Assay Highlights include:

- YRM-20-RC-109-036: 3.0 g/t Au over an estimated true width of 7.7 meters (Min Zone 2)
- YRM-20-RC-109-038: 11.2 g/t Au over an estimated true width of 2.8 meters (Min Zone 2)
- YRM-21-RC-109-053: 3.4 g/t Au over an estimated true width of 6.3 meters (Min Zone 1)
- YRM-21-RC-109-056: 4.2 g/t Au over an estimated true width of 4.9 meters (Min Zone 1)
- YRM-21-RC-109-058: 14.7 g/t Au over an estimated true width of 4.9 meters (Min Zone 1)
- YRM-21-RC-109-062: 3.8 g/t Au over an estimated true width of 4.9 meters (Min Zone 1)

Exploration drilling at Yaramoko has continued to advance the 109 Zone near surface prospect, located approximately 1.5 kilometers north-west of the Yaramoko mill, with 108 RC holes completed during the period April to October for a total of 8,201 meters. Drilling has targeted a 1-kilometer-long zone of sheared mafic volcanics and associated quartz veining situated within the Yaramoko Shear Zone, which hosts the 55 Zone and Bagassi South Mines, with three discrete zones of mineralization identified (refer to Figure 6: Min Zone 1, 2 and 3).

Figure 6: 109 Zone plan view with selected highlights

https://www.globenewswire.com/NewsRoom/AttachmentNg/49dc3124-72fd-4bca-8e86-b4ff9d10f5b0

Results received to date for this program are listed in Appendix 4.

Caylloma Mine, Peru

Animas NE vein assay highlights include:

- ANIM086321: 60 g/t Ag, 5.51% Pb and 6.22% Zn over an estimated true width of 7.2 meters
- ANIM084321: 51 g/t Ag, 2.94% Pb and 5.23% Zn over an estimated true width of 5.8 meters
- ANIM084721: 106 g/t Ag, 2.34% Pb and 3.13% Zn over an estimated true width of 11.8 meters
- ANIM085521: 159 g/t Ag, 2.92% Pb and 1.44% Zn over an estimated true width of 6.1 meters
- ANIM087321: 76 g/t Ag, 4.35% Pb and 7.45% Zn over an estimated true width of 11.3 meters
- ANIM087921: 93 g/t Ag, 4.83% Pb and 7.81% Zn over an estimated true width of 20.5 meters

Exploration drilling at Caylloma continued throughout 2021 totaling 10,121 meters in 26 diamond drill holes, testing the depth continuity of the greater than 3-kilometer-long Animas NE silver-polymetallic vein system, and the strike potential further to the north-east beyond the intersection of the Nancy vein.

Further to previously reported successful step-out drilling results at the Animas NE vein (refer to Fortuna news release dated February 14, 2019), drilling continues to intersect mineralized shoots up to 200 meters beyond the current Resource boundary, extending known mineralization more than 900 meters below surface along the 3 kilometer long Animas NE vein, where it remains open at depth and along strike (Figures 7 and 8). Drilling has primarily focussed on extending Ore Shoots 3 and 4 at depth, as well as testing for

10.11.2025 Seite 3/14

strike extension beyond the Nancy vein intersection and further north-east into the sediments of the basement Yura Group. Full results for the 2021 drilling program are listed in Appendix 5.

Figure 7: Animas NE vein long-section showing recent results from Oreshoot 3 (view is looking northwest)

https://www.globenewswire.com/NewsRoom/AttachmentNg/f450f17c-3be9-4bc0-abed-d1eb128c7baf

Figure 8: Animas NE vein long-section showing recent results from Oreshoot 4 (view is looking northwest)

https://www.globenewswire.com/NewsRoom/AttachmentNg/f07aa03e-ee9b-4060-8b55-716897a70e39

Quality Assurance & Quality Control (QA-QC)

Latin America

Following detailed geological and geotechnical logging, drill core samples are split on-site by diamond sawing. One half of the core is submitted to the ALS Global Laboratory in Lima, Peru, for samples from the Caylloma Mine, the ALS Global Laboratory in Guadalajara, Mexico, for samples from the San Jose Mine and the ALS Global Laboratory in Mendoza, Argentina, for samples from the Arizaro Project. The remaining half core is retained on-site for verification and reference purposes. Following preparation, the samples are assayed for gold and silver by standard fire assay methods and for silver and base metals by Inductively Coupled Plasma and atomic absorption methods utilizing aqua regia digestion at the ALS Global Laboratory in Lima, Peru, for samples from the Caylloma Mine and the Arizaro Project, and at the ALS Global Laboratory in Vancouver, BC, Canada, for samples from the San Jose Mine. The QA-QC program includes the blind insertion of certified reference standards and assay blanks at a frequency of approximately 1 per 20 normal samples as well as the inclusion of duplicate samples for verification of sampling and assay precision levels.

West Africa

All drilling data completed by the Company utilized the following procedures and methodologies. All drilling was carried out under the supervision of the Company's personnel.

All RC drilling at S?gu?la used a 5.25-inch face sampling pneumatic hammer with samples collected into 60-liter plastic bags. Samples were kept dry by maintaining enough air pressure to exclude groundwater inflow. If water ingress exceeded the air pressure, RC drilling was stopped, and drilling converted to diamond core tails. Once collected, RC samples were riffle split through a three-tier splitter to yield a 12.5% representative sample for submission to the analytical laboratory. The residual 87.5% sample were stored at the drill site until assay results were received and validated. Coarse reject samples for all mineralized samples corresponding to significant intervals are retained and stored on-site at the company-controlled core yard.

All DD drill holes at S?gu?la were drilled with HQ sized diamond drill bits. The core was logged, marked up for sampling using standard lengths of one meter or to a geological boundary. Samples were then cut into equal halves using a diamond saw. One half of the core was left in the original core box and stored in a secure location at the company core yard at the relevant project site (S?gu?la or Yaramoko). The other half was sampled, catalogued and placed into sealed bags and securely stored at the site until shipment.

All S?gu?la RC and DD core samples were shipped to ALS Laboratories preparation laboratory in Yamoussoukro for preparation while all Yaramoko samples were direct shipped to ALS Laboratories in Ouagadougou for preparation. S?gu?la samples were shipped via commercial courier to ALS's facility in Ouagadougou, Burkina Faso. Routine gold analysis using a 50-gram charge and fire assay with an atomic absorption finish was completed for all Yaramoko and S?gu?la samples. Quality control procedures included the systematic insertion of blanks, duplicates and sample standards into the sample stream. In addition, the ALS laboratory inserted its own quality control samples.

10.11.2025 Seite 4/14

Qualified Person

Paul Weedon, Senior Vice President of Exploration for Fortuna Silver Mines Inc., is a Qualified Person as defined by National Instrument 43-101 being a member of the Australian Institute of Geoscientists (Membership #6001). Mr. Weedon has reviewed and approved the scientific and technical information contained in this news release. Mr. Weedon has verified the data disclosed, and the sampling, analytical and test data underlying the information or opinions contained herein by reviewing geochemical and geological databases and reviewing diamond drill core. There were no limitations to the verification process.

About Fortuna Silver Mines Inc.

<u>Fortuna Silver Mines Inc.</u> is a Canadian precious metals mining company with four operating mines in Argentina, Burkina Faso, Mexico and Peru, and a fifth mine under construction in C?te d'Ivoire. Sustainability is integral to all our operations and relationships. We produce gold and silver and generate shared value over the long-term for our stakeholders through efficient production, environmental protection, and social responsibility. For more information, please visit our website.

ON BEHALF OF THE BOARD

Jorge A. Ganoza President, CEO and Director Fortuna Silver Mines Inc.

Investor Relations: Carlos Baca | info@fortunasilver.com

Forward looking Statements

This news release contains forward looking statements which constitute "forward looking information" within the meaning of applicable Canadian securities legislation and "forward looking statements" within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995 (collectively, "Forward looking Statements"). All statements included herein, other than statements of historical fact, are Forward looking Statements and are subject to a variety of known and unknown risks and uncertainties which could cause actual events or results to differ materially from those reflected in the Forward looking Statements. The Forward looking Statements in this news release may include, without limitation, statements about the Company's plans for its mines and mineral properties; the anticipated exploration and other development programs at its properties, together with the investment, nature, implementation and timing thereof; the timing for, and anticipated results of any exploration programs to expand mineralization at the properties; the Company's business strategy, plans and outlook; the merit of the Company's mines and mineral properties; mineral resource and reserve estimates; timelines; the future financial or operating performance of the Company; expenditures; approvals and other matters. Often, but not always, these Forward looking Statements can be identified by the use of words such as "estimated", "potential", "open", "future", "assumed", "projected", "used", "detailed", "has been", "gain", "planned", "reflecting", "will", "containing", "remaining", "to be", or statements that events, "could" or "should" occur or be achieved and similar expressions, including negative variations.

Forward looking Statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any results, performance or achievements expressed or implied by the Forward looking Statements. Such uncertainties and factors include, among others, changes in general economic conditions and financial markets; the duration and effects of the COVID-19 pandemic on our operations and workforce and the effects on the global economy and society; changes in prices for silver, gold and other metals; technological and operational hazards in Fortuna's mining and mine development activities; risks inherent in mineral exploration; fluctuations in prices for energy, labour, materials, supplies and services; fluctuations in currencies; uncertainties inherent in the estimation of mineral reserves, mineral resources, and metal recoveries; our ability to obtain all necessary permits, licences and regulatory approvals in a timely manner, including an extension to the environmental impact authorization for the San Jose Mine; governmental and other approvals; political unrest or instability in countries where Fortuna is active; labor relations issues; as well as those factors discussed under "Risk Factors" in the Company's Annual Information Form. Although the Company has attempted to identify important factors that could cause actual actions, events or results to

10.11.2025 Seite 5/14

differ materially from those described in Forward looking Statements, there may be other factors that cause actions, events or results to differ from those anticipated, estimated or intended.

Forward looking Statements contained herein are based on the assumptions, beliefs, expectations and opinions of management, including but not limited to expectations regarding mine production costs; expected trends in mineral prices and currency exchange rates; the accuracy of the Company's current mineral resource and reserve estimates; that the Company's activities will be in accordance with the Company's public statements and stated goals; that there will be no material adverse change affecting the Company or its properties; that all required approvals will be obtained, including an extension to the environmental impact authorization for the San Jose Mine; that there will be no significant disruptions affecting operations and such other assumptions as set out herein. Forward looking Statements are made as of the date hereof and the Company disclaims any obligation to update any Forward looking Statements, whether as a result of new information, future events or results or otherwise, except as required by law. There can be no assurance that Forward looking Statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, investors should not place undue reliance on Forward looking Statements.

APPENDIX 1. S?gu?la gold Project, C?te d'Ivoire: Sunbird Prospect drill results

HoleID	Easting (WGS84_29N)	Northing (WGS84_29N)	Elevation	EOH1 Depth (m)	UTM Azimuth	Dip	Depth
SGRD1365	742735	893385	478	249.5	85	-60	197
						including	198
						and	202
SGRD1366	742720	893285	475	250.5	85	-60	205
						including	205
						and	212
SGRD1367	742705	893185	483	255.5	85	-60	214
							228
							242
SGRD1368	742680	893085	498	285.5	85	-60	269
SGRC1369	742560	892660	558	375.5	85	-60	349
SGRD1370	742620	892660	564	259.5	85	-60	241
						incl.	241
						and	244
						and	252
SGRD1371	742895	893136	526	237.5	270	-60	Pendir
SGRD1372	742914	893190	528	273.5	270	-60	Pendir
SGRD1373	742899	893236	521	204.5	270	-60	Pendir
SGRD1374	742908	893289	515	231.5	270	-60	Pendir
SGRD1375	742928	893289	515	252.4	270	-60	Pendir
SGRD1376	742781	893439	489	183.5	90	-60	143
						including	153
						and	156
SGRD1377	742754	893344	479		90	-60	Re-En

Notes:

1. EOH: End of hole

2. RCD: RC pre-collar, diamond core tail

3. Re-entry: drill hole re-entered and deepened

APPENDIX 2. Lindero Mine, Argentina: Arizaro gold Project drill results

Drill Hole Easting Northing Azimuth (?) Dip (?) From (m) True(rna) (m) Estimated True Width Au (g/t) Cu (%)

10.11.2025 Seite 6/14

ARD-42	2625252	7223658	0.0	-60.0	8	2 0	-	0.71	0.35
					132	1 0 2	-	0.30	0.10
					160	4 64	-	0.53	0.04
ARD-43	2625391	7223717	0.0	-60.5	26	3 0	-	0.57	0.15
					106	30 6	-	0.27	0.14
ARD-44	2625164	7223613	0.0	-62.0		no significan	it results		
ARD-45	2625490	7223893	90.0	-60.0	0	14	-	0.48	0.19
					44	196	73	0.47	0.16
includes					48	664	33	0.60	0.19
ARD-46	2625480	7223936	100.0	-69.5	0	200	68	0.61	0.18
includes					68	22	8	0.83	0.2
and					138	800	21	0.85	0.24
ARD-47	2625192	7223761	90.0	-60.0	176	194	-	0.54	0.23
includes					190	4 94	-	1.62	0.54

Note:

APPENDIX 3. San Jose Mine, Mexico: Drill holes completed since March 2021

Drill Hole	Easting	Northing	Azimuth (?)	Dip (?)	Hole Depth	From	То	Interval	ETW?	Ag	Au	Project
					(m)	(m)	(m)	(m)	(m)	(g/t)	(g/t)	
SJO-1015	747950	1844603	56	-49	694.1	NSI ²						LOS DIAZ
SJO-1018	745889	1847614	295	-67	842.0	NSI ²						VMZ_HW
SJOM-1019	745250	1847553	280		45.3	Aborted	d					TVFW
SJOM-1019A	745250	1847553	280	15	45.9							TVFW
SJOM-1024	745249	1847552	280	17	451.8	NSI ²						TVFW
SJO-1027	745889	1847614	270	-70	806.6	652.70	655.55	2.85	2.2	51	0.83	VMZ_HW
SJO-1031	747951	1844603	81	-45	840.1	NSI ²						LOS DIAZ
SJOM-1032	745299	1847601	75	13	200.3	80.50	81.05	0.55	0.5	40	0.33	VMZ_S
SJOM-1036	745299	1847599	110	5	200.9	163.00	164.60	1.60	1.0	47	0.58	VMZ_S
and						194.30	195.50	1.20	8.0	104	0.89	
SJO-1037	745900	1847820	244	-57	802.8	NSI ²						VMZ_HW
SJOM-1038	745023	1848006	59	10	353.0	NSI ²						VMZ_N
SJOM-1039	745269	1847786	273	11	500.7	NSI ²						TVFW
SJOM-1042	745023	1848005	71	28	350.4	NSI ²						VMZ_N
SJOM-1046	744979	1848369	303	-41	39.0	Aborted	d					MAGDALEN
SJOM-1046A	744979	1848369	303	-41	499.5	417.55	419.85	2.30	1.8	121	0.33	MAGDALEN
and						423.25	425.4	2.10	1.6	77	0.21	
and						425.95	426.45	0.50	0.4	57	0.17	
and						427.00	427.35	0.35	0.3	69	0.21	
and						471.40	473.40	2.00	1.6	77	0.42	
SJOM-1047	745022	1848004	97	27	390.2	217.00	217.50	0.50	0.4	228	1.08	VMZ_N
and						230.40	232.10	1.70	1.5	163	1.77	
SJOM-1049	745268	1847787	287	8	567.5	NSI ²						TVFW
SJOM-1052	745023	1848003	115	26	434.4	NSI ²						VMZ_N
SJO-1053	745902	1847352	268	-45	654.9	630.20	634.30	4.10	1.5	290	2.00	VMZ_HW
Including						631.50	633.20	1.70	0.6	691	4.78	
SJO-1061	748194	1844973	108	-45	608.5	NSI ²						LOS DIAZ

10.11.2025 Seite 7/14

^{1.} Down-the-hole intervals; orientation of the mineralization has not been established and therefore accurate true widths in all intervals cannot be estimated at this time. ARD-45 and ARD-46 are estimates only. ARD-46 ended in mineralization

SJOM-1062	745019 1848005 302	-60	439.3	NSI ²			MAGDALEN
SJOM-1065	745018 1848004 281	-62	351.0	112.70 113.30 0.60	0.3	50	0.50 MAGDALEN
and				118.40 120.40 2.00	1.0	136	1.38
and				237.45 237.75 0.30	0.2	39	0.41
and				271.30 276.75 5.45	2.8	98	0.49
Including				272.35 275.00 2.65	1.4	146	0.72
SJO-1066	745912 1847355 69	-44	627.8	NSI ²			VMZ_HW
SJOM-1068	745268 1847786 270	-11	476.9	NSI ²			TVFW
SJOM-1069	744980 1848369 292	-48	544.4	380.80 381.60 0.80	0.6	84	0.31 MAGDALEN
SJOM-1070	745015 1848008 295	-27	204.1	150.20 150.55 0.35	0.2	193	1.56 MAGDALEN
and				153.20 156.25 3.05	1.9	129	0.59
Including				154.85 156.25 1.40	0.9	199	0.87
and				161.35 161.75 0.40	0.3	147	0.68
SJOM-1070A	745016 1848008 296	-27	406.2	153.60 160.55 6.95	4.0	77	0.38 MAGDALEN
Including				153.60 154.80 1.20	0.7	248	1.06
and				228.40 230.50 2.10	1.2	243	0.82
SJO-1073	745902 1847352 266	-51	781.5	NSI ²			VMZ_HW
SJOM-1074	745268 1847786 280	-25	459.9	413.40 413.85 0.45	0.4	65	0.45 TVFW
SJOM-1075	744979 1848368 276	-51	505.5	NSI ²			MAGDALEN
SJO-1077	745227 1846388 57	-50	451.7	207.20 207.80 0.60	0.4	372	7.79 SAN IGNAC
SJOM-1078	745016 1848007 286	-56	373.9	261.05 261.80 0.75	0.4	99	0.55 MAGDALEN
and				271.95 273.00 1.05	0.5	73	0.46
SJO-1080	745902 1847352 261	-47	588.0	421.70 422.25 0.55	0.4	72	0.71 VMZ_HW
SJOM-1081	744979 1848367 276	-41	450.4	NSI ²			MAGDALEN
SJOM-1082	745093 1847080 84	0	218.4	141.20 141.55 0.35	0.3	111	0.58 BONANZA_
and				165.75 167.05 1.30	1.2	59	0.26
SJO-1084	745227 1846390 36	-47	318.9	50.90 51.90 1.00	0.4	56	0.82 SAN IGNAC
SJO-1087	745229 1846388 83	-58	402.0	194.05 195.10 1.05	0.4	152	1.91 SAN IGNAC
and				395.60 396.15 0.55	0.2	163	0.72
SJOM-1088	745017 1848007 287	-39	350.8	148.00 148.75 0.75	0.6	72	0.02 MAGDALEN
and				155.70 156.35 0.65	0.5	58	0.45
and				159.90 161.05 1.15	0.9	43	0.39
and				162.50 168.40 5.90	4.6	245	1.41
and				251.10 252.40 1.30	1.0	127	0.80
SJOM-1089	744979 1848368 260	-50	415.4	NSI ²			MAGDALEN
SJOM-1090	745093 1847078 100	0	215.3	NSI ²			BONANZA_
SJOM-1091	744978 1848186 276	-32	334.6	168.20 171.30 3.10	1.7	506	2.61 MAGDALEN
and				172.90 173.40 0.50	0.3	146	0.96
and				174.65 175.10 0.45	0.2	275	1.30
and				225.95 226.90 0.95	0.5	44	0.35
SJO-1092	745478 1845518 243	-46	429.8	139.50 139.85 0.35	0.2	99	0.14 SAN IGNAC
SJO-1093	745225 1846390 273	-64	272.0	19.15 21.75 2.60	1.0	101	1.30 SAN IGNAC
SJOM-1094	745093 1847079 66	4	235.3	130.75 131.70 0.95	0.6	75	0.57 BONANZA_
and				147.80 148.25 0.45	0.3	88	0.25
and				171.70 172.80 1.10	1.0	73	0.32
SJOM-1095	744979 1848367 268	3	438.5	NSI ²			MAGDALEN
0.10.4000	745383 1845880 269	-61	421.7	224.05 226.65 2.60	1.8	178	1.21 SAN IGNAC
SJO-1096				277.25 277.85 0.60	0.4	304	2.07
830-1096 and							
	745092 1847080 70	-9	223.5	168.35 169.00 0.65	0.6	247	3.33 BONANZA_
and SJOM-1097	745092 1847080 70 744980 1848370 313	-9 -44	223.5 620.9	168.35 169.00 0.65 NSI ²	0.6	247	3.33 BONANZA_ MAGDALEN
and SJOM-1097 SJOM-1098					0.6 1.9	247 67	

10.11.2025 Seite 8/14

and				224.30 226.70 2.40	1.1	164	1.32
SJO-1100A	745475 1845522 279	-46	420.6	Pending			SAN IGNAC
SJOM-1101	745093 1847080 80	-24	282.9	NSI ²			BONANZA_
SJOM-1102	744979 1848187 273	-78	458.2	190.20 193.05 2.85	1.4	54	0.21 MAGDALEN
and				248.10 248.40 0.30	0.2	77	0.65
and				391.10 392.40 1.30	0.7	55	0.26
and				447.50 447.95 0.45	0.2	54	0.32
SJOM-1102/	744979 1848187 273	-78	314.7	243.35 243.75 0.40	0.2	171	1.73 MAGDALEN
and				250.40 250.95 0.55	0.3	155	1.23
and				418.95 420.20 1.25	0.6	52	0.30
and				425.35 425.65 0.30	0.2	102	0.52
and				429.45 431.30 1.85	0.9	69	0.34
SJO-1103	745384 1845879 288	-66	418.8	82.50 86.10 3.60	8.0	118	0.81 SAN IGNAC
and				92.10 93.50 1.40	0.3	48	0.40
and				243.40 248.10 4.70	1.1	209	1.47
SJOM-1105	744980 1848371 316	-49	652.2	206.00 208.00 2.00	1.1	74	0.02 MAGDALEN
and				454.25 457.35 3.10	1.8	302	0.77
Including				455.75 456.65 0.90	0.5	1,01	0 2.58
and				502.00 502.30 0.30	0.2	118	0.54
SJO-1106	745542 1846098 232	-65	640.2	Pending			SAN IGNAC
SJOM-1107	744980 1848370 304	-59	600.6	491.20 492.00 0.80	0.5	82	0.54 MAGDALEN
and				495.40 496.60 1.20	0.7	67	0.58
and				508.50 508.95 0.45	0.3	319	1.24
SJOM-1108	744978 1848186 249	-54		Pending			SAN IGNAC
SJOM-1109	745108 1848993 299	-42		Pending			VMZ_N
				•			

Notes:

- 1. ETW: Estimated true width
- NSI: No significant intervals
 Silver equivalent (Ag Eq) is calculated using a gold to silver ratio of 1:75, and assumed metal prices of US\$1840 per ounce for Au, US\$24.15 per ounce for Ag, US\$2,300 per ton for Pb and US\$2,875 per ton for Zn.

APPENDIX 4. Yaramoko Mine, Burkina Faso: 109 Zone drill results

HoleID	Easting (ADINDAN_30N)	Northing (ADINDAN_30N)	RL	EOH ¹ Depth (m)	UTM Azimuth	Dip I	De
YRM-20-RC-109-001	468585	1300781	351	27	240	-55 ´	16
including						1	20
YRM-20-RC-109-002	468609	1300792	354	- 50	240	-55 3	39
YRM-20-RC-109-003	468620	1300776	352	. 46	240	-55 4	41
YRM-20-RC-109-005	468654	1300777	357	75	240	-55 6	65
YRM-20-RC-109-006	468587	1300803	362	. 42	240	-55 2	21
including						:	24
YRM-20-RC-109-007	468618	1300826	347	75	240	-55 6	61
YRM-20-RC-109-008	468652	1300749	342	. 66	240	-55 4	49
YRM-20-RC-109-009	468645	1300716	340	39	240	-55 2	24
including						;	26
YRM-20-RC-109-010	468669	1300715	325	53	240	-55 3	39
YRM-20-RC-109-011	468657	1300688	324	- 30	240	-55 2	22
including						:	22
YRM-20-RC-109-012	468684	1300683	324	53	240	-55 4	42
							,

10.11.2025 Seite 9/14

				
YRM-20-RC-109-013 468694	1300709	335 78	240	-55 68
YRM-20-RC-109-014 468683	1300653	335 33 335 51	240	-55 24
YRM-20-RC-109-015 468701 YRM-20-RC-109-016 468776	1300641	335 51 337 40	240	-55 33
	1300435	327 40	230	-55 26
YRM-20-RC-109-017-468768	1300412	326 22	230	-55 7
YRM-20-RC-109-018 468805	1300433	327 59	230	-55 35
YRM-20-RC-109-019 468791	1300396	306 37	230	-55 5
and VPM 20 PC 100 020 469960	1200414	200.06	220	27 55 66
YRM-20-RC-109-020 468860	1300414	308 96	230	-55 66
and VPM 20 PC 100 021 469920	1200261	205 57	220	82 55.26
YRM-20-RC-109-021 468820	1300364	305 57	230	-55 26
YRM-20-RC-109-022 468813	1300329	304 36	230	-55 4
YRM-20-RC-109-023 468884	1300382	321 96	230	-55 46
and	1000045	240.04	200	86
YRM-20-RC-109-024 468894	1300345	318 81	230	-55 76
YRM-20-RC-109-025 468699	1300580	310 37	240	-55 6
including	1222720	242 =4	2.40	10
YRM-20-RC-109-026 468731	1300593	312 51	240	-55 40
YRM-20-RC-109-027 468971	1300536	332 66	205	-55 46
including				48
YRM-20-RC-109-028 468983	1300502	341 42	205	-55 27
including				29
including				31
YRM-20-RC-109-029 469226	1300369	338 51	205	-55 18
and				37
and				43
YRM-20-RC-109-030 469199	1300363	337 35	205	-55 16
YRM-20-RC-109-031 469185	1300398	333 60	205	-55 0
including				1
YRM-20-RC-109-032 469126	1300414	333 51	205	-55 28
YRM-20-RC-109-036 469044	1300481	321 81	200	-55 12
and				40
including				41
including				48
YRM-20-RC-109-037 469021	1300473	322 50	205	-55 27
				Inc 27
YRM-20-RC-109-038 469002	1300513	330 69	205	-55 51
including				52
and				60
YRM-21-RC-109-039 468569	1300788	342 24	240	-55 5
YRM-21-RC-109-040 468630	1300763	338 51	240	-55 41
YRM-21-RC-109-041 468680	1300793	331 114	240	-55 87
YRM-21-RC-109-042 468710	1300796	334 138	240	-55 11
and				11
YRM-21-RC-109-044 468665	1300848	340 129	240	-55 11
YRM-21-RC-109-045 468705	1300825	336 147	240	-55 13
including				13
YRM-21-RC-109-046 468658	1300798	332 94	240	-55 78
including				79
YRM-21-RC-109-047 468658	1300882	351 147	240	-55 13
including				13
YRM-21-RC-109-049 468595	1300741	328 24	240	-55 6
	·			-

10.11.2025 Seite 10/14

YRM-21-RC-109-051 468618	1300712	329 30	240 240	-55 11
YRM-21-RC-109-052 468667	1300665	321 42		-55 17
YRM-21-RC-109-053 468703 including	1300680	326 84	240	-55 57 58
YRM-21-RC-109-054 468680 including	1300631	322 36	240	-55 16 19
YRM-21-RC-109-055 468726	1300633	321 75	240	-55 38
and				50
including				52
YRM-21-RC-109-056 468733 including	1300673	305 97	240	-55 80 81
YRM-21-RC-109-057 468712	1300698	320 105	240	-55 74
YRM-21-RC-109-058 468740	1300757	328 147	240	-55 124
including				125
YRM-21-RC-109-060 468772	1300682	334 138	240	-55 114
YRM-21-RC-109-062 468765	1300610	331 90	240	-55 70
YRM-21-RC-109-063 468774	1300580	329 90	240	-55 66
YRM-21-RC-109-064 468728	1300555	328 33	240	-55 21
YRM-21-RC-109-065 468704	1300737	330 110	240	-55 8
YRM-21-RC-109-066 468554	1300829	344 33	240	-55 21
YRM-21-RC-109-067 468573	1300840	350 57	240	-55 41
YRM-21-RC-109-070 468594 and	1300899	357 114	240	-55 86 94
YRM-21-RC-109-071 468779	1300389	325 42	230	-55 0
YRM-21-RC-109-074 468783	1300309	324 39	230	-55 14
YRM-21-RC-109-075 468841	1300412	328 91	230	-55 75
YRM-21-RC-109-075 466841	1300448	332 126	230	-55 75 -55 93
including				95
YRM-21-RC-109-077 468805 and	1300467	323 72	230	-55 54 64
YRM-21-RC-109-078 468808	1300513	330 94	230	-55 84
YRM-21-RC-109-079 468794	1300542	338 99	230	-55 81
YRM-21-RC-109-080 468839	1300381	327 66	230	-55 26
and	1000001	027 00	200	48
YRM-21-RC-109-081 468849	1300367	321 66	230	-55 23
and				38
and				57
YRM-21-RC-109-082 468837	1300427	320 83	230	-55 0
and				55
YRM-21-RC-109-083 468830	1300348	329 46	230	-55 23
YRM-21-RC-109-085 468591	1300768	337 39	240	-55 15
YRM-21-RC-109-086 468958	1300580	312 96	205	-55 35
YRM-21-RC-109-087 468962 including	1300619	341 129	205	-55 96 97
YRM-21-RC-109-088 468944	1300576	335 78	205	-55 50
YRM-21-RC-109-086 468934	1300636	339 123	205 205	
	1300030	338 123	203	-55 89
and VPM 24 BC 400 000 468757	4000000	200 54	000	115 55 46
YRM-21-RC-109-090 468757	1300508	329 51	230	-55 46
YRM-21-RC-109-091 469035	1300571	332 129	205	-55 84
and				88
and				96
and				104

10.11.2025 Seite 11/14

YRM-21-RC-109-093 468910	1300594	321 81	205	-55 38
YRM-21-RC-109-095 469003	1300590	329 130	205	-55 87
and				90
and				11
YRM-21-RC-109-096 469063	1300548	339 129	205	-55 62
and				11
YRM-21-RC-109-097 469063	1300513	336 99	205	-55 60
and				79
YRM-21-RC-109-098 469097	1300530	338 126	205	-55 10
including				10
YRM-21-RC-109-099 469083	1300504	324 100	205	-55 44
and				78
YRM-21-RC-109-100 469108	1300491	323 102	205	-55 75
including				77
YRM-21-RC-109-102 469022	1300550	334 108	205	-55 71
and				89
including				96
YRM-21-RC-109-103 469101	1300429	317 51	205	-55 20
including				21
YRM-21-RC-109-105 469173	1300370	329 45	205	-55 21
YRM-21-RC-109-106 469060	1300462	332 65	205	-55 36
YRM-21-RC-109-108 468982	1300469	340 21	205	-55 1
YRM-21-RC-109-109 468929	1300525	340 40	205	-55 3
YRM-21-RC-109-112 468826	1300644	331 81	205	-55 29
YRM-21-RC-109-114 468783	1300678	328 73	205	-55 12
YRM-21-RC-109-115 468848	1300688	344 117	205	-55 69
YRM-21-RC-109-118 469010	1300493	343 66	205	-55 55
YRM-21-RC-109-126 468756	1300725	327 144	242	-55 45
and				11
YRM-21-RC-109-127 468719	1300807	331 150	239	-56 13
including				13
YRM-21-RC-109-128 468774	1300828	334 201	239	-55 11
and				18
YRM-21-RC-109-129 468784	1300776	330 201	242	-55 16
including				16
YRM-21-RC-109-130 468816	1300741	330 198	239	-57 17
YRM-21-RC-109-131 468674	1300623	324 18	241	-55 3
YRM-21-RC-109-132 468664	1300635	324 15	241	-56 1
YRM-21-RC-109-133 468695	1300611	324 33	239	-55 18
YRM-21-RC-109-134 468652	1300658	323 15	239	-55 0
YRM-21-RC-109-135 468644	1300673	324 15	241	-55 2
YRM-21-RC-109-136 468637	1300694	325 18	241	-55 6
YRM-21-RC-109-137 468683	1300605	323 21	240	-55 3
YRM-21-RC-109-138 469118	1300510	332 126	202	-58 96
YRM-21-RC-109-139 469098	1300568	338 159	205	-55 98
and				14
including				14

Note:

1. EOH: End of hole

10.11.2025 Seite 12/14

APPENDIX 5. Caylloma Mine, Peru: Animas NE vein drill results

Drill Hole	Easting	Northing	Azimuth	Dip	From	То	Interval	ETW?	Ag	Au	Pb	Zn
					(m)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
ANIS082021	195933	8318903	270	-46	401.6	401.9	0.3	0.3	50.8	0.06	2.87	7.15
and					171.5	177.0	5.5	2.3	58.5	0.13	3.36	9.79
and					192.3	208.7	16.4	7.0	101.0	0.08	5.51	7.04
ANIS082821A	196005	8319013	295	-58	424.3	424.7	0.4	0.3	2.6		0.25	0.4
and					530.7	532.8	2.1	1.6			1.00	6.30
and					540.0	546.9	6.9	5.1	45.8	0.02	0.93	11.43
PISS000121	193814	8313976	359	-59	NSI ²							
ANIM084221	195401	8318155	298		231.1	235.1	4	3.6		0.02		3.64
ANIM084321	195474	8318240	319	-70	290.9		8.1	5.8	50.9	0.06	2.94	5.23
ANIS084521	196006	8319013	304	-53	412.8	413.2	0.40	0.4	25.3	0.01	2.72	5.33
and					603.8	605.1	1.25	1.2	36.5	0.01	6.07	10.26
and					634.5	636.6	2.10	2.0	16.1		2.97	4.99
and					660.6	661.6	1.05	1.0			11.35	
ANIM084721	195400	8318154	293	-36	222.7	235.4	12.8	11.8	106.0	0.03	2.34	3.13
PISS000321	192609	8313948	27	-45	NSI ²							
ANIM084921	195399	8318152	275	-25	258	259.1	1.1	0.7	107.9	0.07	0.42	1.3
ANIS085121	196006	8319013	294	-52	444.7	445	0.3	0.3	1.2	0.00	0.12	0.22
PIS000421	192007	8313075	1	-51	NSI ²							
ANIM085321	195473	8318237	284	-61	285.3	285.65	0.35	0.3	61.0	0.04	4.89	0.24
ANIM085521	195399	8318152	275	-43	233.25	240.8	7.55	6.1	159.4	0.02	2.92	1.44
LPLM004021	195406	8318150	129	-4	555	557.95	2.95	2.4	46.1	0.10	1.53	3.32
ANIM085821	195473	8318237	283	-44	246.05	250.9	4.85	4.4	69.9	0.02	1.64	1.16
ANIS086021	195934	8318903	257	-54	474.85	482.65	7.8	7.0	8.0	0.00	0.03	0.06
ANIS086321	195477	8318240	353	-69	334.75			7.2			5.51	6.22
and					372.65	376.7	4.1	3.0	78.8	0.02	3.47	3.58
ANIM086821	194984	8317708	282	-57	178.1	185.25	7.15	5.0	38.8	0.07	2.62	3.11
ANIS086921A	195413	8319045	24	-50	83.85	88.15	4.3	3.6	7.3	0.06	0.07	0.29
ANIS087221	195415	8319042	260	-45	68.25	69.05	8.0	0.60	35.2	0.46	0.37	1.04
ANIM087321	194983	8317708	270	-36	186.15	200.6	14.5	11.3	75.8	0.12	4.35	7.45
ANIS087421	195382	8318926	319	-47	74.25	81.9	7.7	6.5	4.6	0.12	0.04	0.49
ANIS087821	195378	8318927	280	-19	62.1	62.8	0.7	0.7	53.0	0.84	0.82	0.15
ANIM087921	194983	8317706	254	-53	269.7	270.3	0.7	0.4	14.9	0.14	0.97	3.20
ANIS088121	195410	8318871	294	-37	74.25	81.90	7.65	6.53	4.6	0.12	0.04	0.49
ANIS087921	194983	8317706	254	-53	210.1	242.0	31.9	20.5	93.0	0.07	4.83	7.81

Notes:

1. ETW: Estimated true width 2. NSI: No significant intervals

Attachments

- Figure 1:
 Figure 2:
 Figure 3:
 Figure 4:
 Figure 5:
 Figure 6:
 Figure 7:
 Figure 8:

10.11.2025 Seite 13/14 Dieser Artikel stammt von Rohstoff-Welt.de Die URL für diesen Artikel lautet:

https://www.rohstoff-welt.de/news/401857--Fortuna-drills-16.5-g-t-gold-over-6.3-meters-at-Sgula-and-provides-exploration-update.html

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.

10.11.2025 Seite 14/14