Osisko Windfall Drilling Intercepts Wide High-Grade in Expansion Holes

08.12.2021 | GlobeNewswire

TORONTO, Dec. 08, 2021 - Osisko Mining Inc. (OSK:TSX. "Osisko" or the "Corporation") is pleased to provide new analytical results from the ongoing drill program at its 100% owned Windfall gold project located in the Abitibi greenstone belt, Urban Township, Eeyou Istchee James Bay, Qu?bec.

Significant new analytical results presented below include 97 intercepts in 31 drill holes (12 from surface, 19 from underground) and 22 wedges. The infill intercepts are located inside defined February 2021 mineral resource estimate ("MRE") blocks (see Osisko news release dated February 17, 2021). The expansion intercepts are located outside the February 2021 MRE blocks and either expand resource wireframes or are in a defined zone or corridor but do not yet correlate to a specific wireframe.

Osisko Chief Executive Officer John Burzynski commented: "Today's results underscore once again how much room there is to grow at Windfall with the headline holes located outside the resource released in February earlier this year. Targeted infill drilling also returned high-grade intercepts highlighting the robust grade of the deposit."

Selected high-grade intercepts include: 163 g/t Au over 8.8 metres in OSK-W-21-1462-W11; 178 g/t Au over 2.9 metres in OSK-W-21-2551-W5; 135 g/t Au over 2.0 metres in OSK-W-21-1871-W1; 104 g/t Au over 2.4 metres in OSK-W-21-1949-W6; 95.2 g/t Au over 2.1 metres in OSK-W-21-2287-W7; 32.4 g/t Au over 5.7 metres in OSK-W-21-2540-W5, 49.4 g/t Au over 2.0 metres in WST-21-0903, 35.7 g/t Au over 2.4 metres in WST-21-0901, 21.5 g/t Au over 4.0 metres in OSK-W-21-2544-W2 and 42.7 g/t Au over 2.0 metres in WST-21-0879. Maps showing hole locations and full analytical results are available at www.osiskomining.com.

Infill Drilling

Hole No.	From (m)	To (m)	Interval (m)	Au (g/t) uncut	Au (g/t) cut to 100 g/t	Zone	Corridor
OSK-W-21-1871-W1	888.6	891.0	2.4	12.5		UDD_4106	Underdog
	1008.0	1010.0	2.0	135	50.1	UDD_4501	Underdoa
including	1008.0	1009.0	1.0	270	100	000_4001	Orlaciaog
OSK-W-21-1871-W3	491.0	493.1	2.1	7.90		CA2 2211	Caribou
including	491.5	491.9	0.4	18.8		ONZ_ZZTT	Cariboa
	549.0	551.0	2.0	5.32		CA2_2233	Caribou
OSK-W-21-1949-W6	747.2	749.6	2.4	104	27.6	LXM_3345	Lvnx
including	748.1	748.6	0.5	466	100	L/(W_0040	Lyllx
OSK-W-21-2287-W7	1213.9	1216.0	2.1	95.2		LX4_3449	Lynx 4
OSK-W-21-2407-W2	802.0	805.0	3.0	8.55		UDD_4106	Underdoa
including	802.8	803.5	0.7	21.1		000_4100	Orlaciaog
OSK-W-21-2416-W7	1018.0	1020.0	2.0	41.3	15.8	TLX_3162	Triple I vny
including	1019.3	1019.6	0.3	270	100	12/10/02	TTIPIO LYTIX
	1032.0	1034.0	2.0	36.8	23.9	TLX_3162	Triple I vny
including	1032.9	1033.2	0.3	186	100	12/10/	TTIPIO LYTIX
OSK-W-21-2512-W2	433.0	435.0	2.0	7.24		CA2_2211	Caribou
	687.6	690.0	2.4	28.2		UDD_4100	Underdoa
including	688.3	689.3	1.0	65.8		000_1100	Orladiadg
	694.0	696.0	2.0	6.01		UDD_4100	Underdog
	715.0	720.0	5.0	5.04		UDD_4102	Underdog

22.12.2025 Seite 1/8

72	24.0 72	26.0	2.0	4.28		UDD_4102	Underdog
OSK-W-21-2531-W3 81	10.0 8	13.0	3.0	11.4		UDD_4110	Underdog
87	73.0 87	77.0	4.0	10.3		UDD_4101	Underdog
91				10.2		UDD_4100	Underdog
OSK-W-21-2531-W4 84		47.3		6.79		UDD_4101	Underdog
•				35.3		000_4101	Officeracy
OSK-W-21-2532-W3 82	28.0 83	33.0	5.0	8.29		UDD_4100	Underdog
· ·				24.0		0DD_+100	Onderdog
				19.0	16.1	UDD_4100	Underdog
•				131	100		_
OSK-W-21-2537-W3 93				12.6		TLX_3183	
OSK-W-21-2544-W2 77				4.22		TLX_3171	Triple Lynx
				21.5		TLX_3171	Triple Lvnx
· ·		85.2 (62.8			,
				19.0		TLX_3184	Triple Lvnx
•		94.4 (93.3			, ,
				17.5		TLX_3195	Triple Lynx
•				58.1		_	, ,
OSK-W-21-2551-W5 94				17.3		LX4_3430	Lynx 4
•				78.6	00.0		•
		61.3			36.3	LX4_3430	Lynx 4
•		59.7 (556 7.74	100		
OSK-W-21-2578-W3 60		06.9		7.71		UDD_4100	Underdog
· ·		06.9 (20.9		TI V 2462	Triple Lyey
OSK-W-21-2587-W1 10		032.0 <i>2</i> 040.0 <i>2</i>		20.5 5.36		TLX_3163	Triple Lynx
		040.0 <i>1</i> 039.0 (27.1		TLX_3164	Triple Lynx
•		049.0 (3.99		TLX_3164	Triple I vnx
		091.0 2		5.66		12/_0104	TTIPIO LYTIX
		089.4 (16.6		TLX_3162	Triple Lynx
•		109.0		8.17		TLX_3170	Triple Lynx
		78.0		5.70		Z27_1115	
		314.0 2		5.62		LX4_3445	
OSK-W-21-2612-W1 38		84.9		4.02			•
		83.0 (14.4		Z27_1115	Zone 27
•		22.0		14.6			
including 91	16.2 9 ⁻	16.6 (0.4	38.1		TLX_3161	Triple Lynx
and 91	18.7 9 ⁻	19.3 (0.6	41.0			
96	67.9 97	70.0	2.1	19.8			
including 96	67.9 96	68.3 (0.4	60.9		TLX_3163	Triple Lynx
and 96	68.9 96	69.3 (0.4	42.5			
99	94.0 99	96.0	2.0	3.77		TI V 2464	Triple Lypy
including 99	94.4 99	95.0 (0.6	8.21		TLX_3164	Triple Lyrix
OSK-W-21-2621 62	28.0 63	30.0	2.0	18.6		UDD_4101	Underdog
OSK-W-21-2625 81	14.9 8 ⁻	17.3	2.4	10.9		LX4_3437	Lyny 4
-		15.2 (55.1			•
		35.0		26.5		F11_6001	
		05.0 2		3.66		F11_6000	F-11
		41.5		19.6		F11_6009	F-11
•		40.5 (47.7		15500	
		70.4		4.21		CA2_2211	Caribou
including 57	70.1 57	70.4 (0.3	24.2			

22.12.2025 Seite 2/8

OSK-W-21-2636	365.0		2.0	4.26		CA1_2551 Caribou
including	366.0	366.4	0.4	12.4		
	550.0	552.0	2.0	13.0		Z27_1107 Zone 27
including	551.0	551.7		35.6		
OSK-W-21-2641	118.4	124.0	5.6	4.04		F11_6001 F-11
WST-21-0649	456.0	458.0	2.0	6.23		TLX_3165 Triple Lynx
WST-21-0875	510.0	512.7	2.7	20.7	18.8	LX4_3450 Lynx 4
including	512.2	512.7	0.5	111	100	LA4_3430 Lylix 4
WST-21-0878	346.0	348.3	2.3	7.43		TLV 2424 Triple Lynny
including	348.0	348.3	0.3	37.7		TLX_3131 Triple Lynx
WST-21-0879	510.0	512.0	2.0	42.7	25.8	174 0450 1
including	510.5	511.0	0.5	168	100	LX4_3450 Lynx 4
· ·	612.5	615.0	2.5	24.0		
including	612.5	613.0	0.5	78.8		LX4_3429 Lynx 4
WST-21-0900	272.9	275.4	2.5	5.33		
including	275.0	275.4	0.4	22.2		LHW_3215 Lynx HW
WST-21-0901	308.0	310.4	2.4	35.7	24.5	
including	309.6	309.9	0.3	189	100	LHW_3215 Lynx HW
WST-21-0907	509.5	512.5	3.0	19.8		
including	509.5	511.0	1.5	39.5		LX4_3430 Lynx 4
morading	644.0	646.1	2.1	38.8	35.1	
including	645.0	645.5	0.5	116	100	LX4_3448 Lynx 4
WST-21-0912	603.0	605.1	2.1	38.6	100	
						LX4_3429 Lynx 4
including	603.6	604.5	0.9	74.9		1100/ 00451 - 100/
WST-21-0920B	301.1	303.2	2.1	4.08		LHW_3215 Lynx HW
WST-21-0922	102.0	104.0	2.0	3.57		LXM_3304 Lynx

Notes: True widths are estimated at 55 - 80% of the reported core length interval. See "Quality Control and Reporting Protocols" below. CA1 and CA2 = Caribou, LX4 = Lynx 4, LHW = Lynx Hanging Wall, LXM = Lynx Main, TLX = Triple Lynx, UDD = Underdog, F11 = F-Zones, Z27 = Zone 27.

Expansion Drilling

Hole No.	From (m)	To (m)	Interval (m)	Au (g/t) uncut	Au (g/t) cut to 100 g/t	Zone	Corridor
OSK-W-21-1432-W11	929.3	938.1	8.8	163	26.0	LX4	Lynx
including	929.3	931.0	1.7	811	100		_yx
OSK-W-21-1871-W2	754.0	756.0	2.0	4.06		UDD	Underdog
OSK-W-21-2287-W7	1233.0	1235.0	2.0	24.2		LX4	Luny 1
including	1233.5	1234.4	0.9	49.0		LA4	Lynx 4
OSK-W-21-2407-W2	769.3	771.9	2.6	13.4		LIDD	
including	769.3	769.7	0.4	57.1		UDD	Underdog
OSK-W-21-2465-W4	765.6	767.7	2.1	23.0		TLX	Triple Lynx
including	766.8	767.7	0.9	50.2		ILX	TTIPIE LYTIX
OSK-W-21-2465-W6	938.0	940.0	2.0	4.61		TLX	Triple Lynx
OSK-W-21-2540-W5	948.0	953.7	5.7	32.4	26.1	TIV	Triple Lyey
including	951.7	952.7	1.0	136	100	TLX	Triple Lynx
OSK-W-21-2540-W6	949.0	951.0	2.0	11.8		TLV	Triple Lynny
including	949.0	950.0	1.0	23.3		TLX	Triple Lynx
	955.0	957.0	2.0	29.0		TIV	Triple Lyey
including	955.6	956.4	8.0	71.1		TLX	Triple Lynx
OSK-W-21-2544-W2	819.0	821.0	2.0	5.18		TI V	Triple Lyey
including	819.9	820.2	0.3	29.7		TLX	Triple Lynx

22.12.2025 Seite 3/8

OSK-W-21-2578-W3	589.5	591.6 2.1	7.42	UDD	Underdog
including	590.1	590.7 0.6	24.7		0
OSK-W-21-2587-W1	967.0	969.0 2.0	4.01	TLX	Triple Lynx
including	967.0	967.9 0.9	8.06		
OSK-W-21-2589	131.6	133.6 2.0	7.71	LNX	Lynx
including	132.8	133.2 0.4	31.0		•
OSK-W-21-2599	725.0	727.0 2.0	24.7	CA2	Caribou
including	725.0	726.0 1.0	49.3	0.4.0	0 11
	730.0	732.0 2.0	5.92	CA2	Caribou
001/ 1/1 04 0040	745.4	748.3 2.9	5.42	CA2_2220	
OSK-W-21-2613	1015.0	1017.0 2.0	5.65	TLX	Triple Lynx
OSK-W-21-2635	597.3	600.0 2.7	12.0	CA2	Caribou
including	598.1	598.4 0.3	40.4		
WST-21-0649	606.0	608.0 2.0	5.94	LX4	Lynx
including	606.4	606.7 0.3	37.2		•
WST-21-0793	74.0	76.0 2.0	3.72	LNX	Lynx
including	74.3	75.1 0.8	8.11		
WST-21-0863	336.3	338.7 2.4	6.80	TLX	Triple Lynx
including	338.3	338.7 0.4	29.1		
WST-21-0878	138.0	140.5 2.5	3.93	TLX	Triple Lynx
WST-21-0886	231.0	233.0 2.0	8.62	LSW	Lynx SW
including	232.6	233.0 0.4	42.8		_,
	319.2	323.8 4.6	6.98		
including	319.2	319.5 0.3	35.7	LSW	Lynx SW
and	320.1	320.4 0.3	30.9		
	362.4	364.4 2.0	4.74	LSW 3502	2 Lynx SW
including	362.4	362.7 0.3	31.0		
WST-21-0894B	101.0	103.0 2.0	4.94	ВСТ	Bobcat
including	101.3	101.8 0.5	19.0		
WST-21-0898	239.5	241.8 2.3	10.3	TLX	Triple Lynx
including	240.7	241.4 0.7	31.4		
WST-21-0903	274.1	276.1 2.0	49.4	TLX	Triple Lynx
WST-21-0907	567.0	569.0 2.0	7.94	LX4	Lynx
including	567.0	567.8 0.8	19.5	_,	_,
	583.0	585.0 2.0	3.53	LX4	Lynx 4
including	583.5	584.0 0.5	13.5		_y
WST-21-0909	366.4	368.5 2.1	3.88	TLX	Triple Lynx
including	367.8	368.1 0.3	11.3		
	384.0	386.4 2.4	5.94	TLX	Triple Lynx
including	385.1	385.5 0.4	32.1	I EX	There Lynx
	409.0	411.5 2.5	4.92	TLX	Triple Lynx
including	411.1	411.5 0.4	15.3	I LX	тпрю Еупх
WST-21-0915B	247.0	249.5 2.5	9.56	TLX	Triple Lynx
including	247.0	247.5 0.5	45.0	1 L /\	THPIC LYTIX
	358.6	361.2 2.6	22.2	TLX	Triple Lynx
including	359.6	360.3 0.7	63.7		THPIC LYTIX
	368.2	370.5 2.3	4.01	TLX	Triple Lynx
WST-21-0916A	386.0	388.0 2.0	4.68	TLX	Triple Lynx
including	387.2	387.5 0.3	10.6	1 L /\	THPIC LYIIX

Notes: True widths are estimated at 55 - 80% of the reported core length interval. See "Quality Control and Reporting Protocols" below. BCT = Bobcat, CA2 = Caribou, LNX= Lynx, LSW = Lynx South West, LX4 =

22.12.2025 Seite 4/8

Lynx 4, TLX = Triple Lynx, UDD = Underdog.

Drill hole location

Hole Number	Azimuth (?)	Dip (?)	Length (m)	UTM E UTM N	Elevation	Section
OSK-W-21-1432-W11	132	-55	1149	453811 5435779	9 400	4300
OSK-W-21-1871-W1	331	-56	1119	452496 5434397	7 402	2475
OSK-W-21-1871-W2	331	-56	915	452496 5434397	402	2475
OSK-W-21-1871-W3	331	-56	906	452496 5434397	7 402	2475
OSK-W-21-1949-W6	105	-57	1227	453440 5435479	9 401	3825
OSK-W-21-2287-W7	116	-53	1320	453607 5435714	1 404	4075
OSK-W-21-2407-W2	347	-55	843	452315 5434420	399	2325
OSK-W-21-2416-W7	123	-54	1104	453169 5435624	1 412	3650
OSK-W-21-2465-W4	123	-61	1053	453398 5435556	3 413	3825
OSK-W-21-2465-W6	123	-61	993	453398 5435556	3 413	3825
OSK-W-21-2512-W2	331	-54	834	452448 543446	5 400	2475
OSK-W-21-2531-W3	344	-62	1329	452566 543441	5 403	2550
OSK-W-21-2531-W4	344	-62	1203	452566 543441	5 403	2550
OSK-W-21-2532-W3	341	-60	1191	452478 5434430	401	2475
OSK-W-21-2537-W3	114	-54	1024	452981 5435549	420	3450
OSK-W-21-2540-W5	117	-60	1311	453465 5435640	410	3925
OSK-W-21-2540-W6	117	-60	1541	453465 5435640	410	3925
OSK-W-21-2544-W2	128	-50	1044	452960 5435539	419	3425
OSK-W-21-2551-W5	120	-55	1023	453622 543563	5 405	4050
OSK-W-21-2578-W3	350	-53	723	452178 5434397	7 399	2200
OSK-W-21-2587-W1	127	-59	1176	453350 5435673	3 418	3850
OSK-W-21-2589	130	-49	663	452960 5435539	420	3425
OSK-W-21-2599	328	-62	774	452787 5434526	397	2800
OSK-W-21-2600	329	-50	789	452470 5434626	6 403	2550
OSK-W-21-2605	112	-55	1401	453552 5435669	9 408	4025
OSK-W-21-2612-W1	333	-51	690	452391 5434638	3 402	2500
OSK-W-21-2613	114	-53	1092	452981 5435549	9 420	3450
OSK-W-21-2621	344	-53	1001	452272 5434396	399	2275
OSK-W-21-2625	33	-77	891	454135 5435058	3 396	4225
OSK-W-21-2631	158	-47	165	452336 5435850	406	3050
OSK-W-21-2632	141	-44	153	452363 543585	7 406	3075
OSK-W-21-2635	327	-56	708	452684 5434475	5 402	2675
OSK-W-21-2636	337	-52	801	452499 5434619	9 403	2575
OSK-W-21-2641	177	-46	165	452436 5435884	1 407	3150
WST-21-0649	136	-47	790	453258 543521	l 98	3525
WST-21-0793	125	-15	121	453463 543532	7 32	3775
WST-21-0863	135	-64	403	453508 5435327	7 -7	3800
WST-21-0875	144	-47	577	453322 543523	5 54	3600
WST-21-0878	128	-40	711	453375 5435297	7 -26	3675
WST-21-0879	139	-44	724	453258 5435209	96	3525
WST-21-0886	128	-51	375	452954 5435004	1 253	3175
WST-21-0894B	132	-52	417	452955 5435004	1 253	3175
WST-21-0898	141	-61	402	453508 5435327	7 -7	3800
WST-21-0900	122	-13	316	453462 5435326	33	3775
WST-21-0901	116	-18	340	453462 543532	7 32	3775
WST-21-0903	120	-61	322	453509 5435328	3 -7	3800
WST-21-0907	130	-40	701	453374 5435296	6 -26	3675

22.12.2025 Seite 5/8

WST-21-0909	151	-59	426	453507 5435328 -7	3800
WST-21-0912	141	-41	640	453258 5435209 96	3525
WST-21-0915B	143	-63	490	453507 5435328 -7	3800
WST-21-0916A	146	-52	586	453321 5435235 54	3600
WST-21-0920B	135	-24	348	453462 5435326 32	3775
WST-21-0922	146	-35	114	453314 5435164 124	3550

Bobcat

Mineralization most commonly occurs in gold-bearing quartz-pyrite veins controlled by northeast trending faults and shears and to a lesser extent in minor crustiform quartz-tourmaline-ankerite-pyrite veins and pyrite replacement zones and stockwork. Mineralization is hosted in sheared mafic volcanics, rhyolites near faults, or at the contact with felsic porphyritic intrusions.

Caribou Zone

Mineralization most commonly occurs in gold-bearing pyrite stockworks as well as semi-massive pyrite replacement zones associated with phyllic alteration (sericite-pyrite? silica) with sulphides, pyrite dominated with minor chalcopyrite and sphalerite ranging from trace to up to 20%, and local visible gold. Mineralization is hosted in rhyolites or mafic-intermediate volcanics frequently at or near faults or the contact with felsic porphyritic intrusions.

F-Zones

Mineralization is hosted in sheared andesites with carbonate replacement or quartz veining and occurs as quartz? ankerite veinlets or as replacement type in shear zones and is characterised by trace to 10% pyrite with local visible gold. Alteration is dominated by sericite-fuchsite-tourmaline-pyrite.

Lynx Zone

Mineralization occurs as grey to translucent quartz-carbonate-pyrite-tourmaline veins and pyrite replacement zones and stockworks. Vein-type mineralization is associated with haloes of pervasive sericite-pyrite? silica alteration and contain sulphides (predominantly pyrite with minor amounts of chalcopyrite, sphalerite, galena, arsenopyrite, and pyrrhotite) and local visible gold. Replacement mineralization is associated with strong pervasive silica-sericite-ankerite? tourmaline alteration and contains disseminated pyrite from trace to 80% with local visible gold. Pyrite stockworks can form envelopes that reach several tens of metres thick. Fuchsite alteration is common and is spatially constrained to near the gabbros. Mineralization occurs at or near geological contacts between felsic porphyritic or fragmental intrusions and the host rhyolites or gabbros and locally can be hosted along the gabbro-rhyolite contact.

Underdog

Mineralization most commonly occurs in gold-bearing quartz-pyrite (? tourmaline) veins and as disseminated, stringer, semi-massive to massive pyrite with minor sphalerite, chalcopyrite and molybdenite associated with strong sericite and silica alteration. Mineralization is hosted along the intrusive contacts of a three-phase composite felsic porphyritic unit which cross-cuts felsic and mafic volcanic sequences.

Zone 27

Mineralization most commonly occurs as replacement-type characterized by 5% to 50% disseminated, stringer, semi-massive or stockwork pyrite, ptygmatic tourmaline veins, quartz-tourmaline crustiform veins, local quartz-carbonate veins, and local visible gold. Mineralization is associated with moderate to strong sericite, weak to strong silica, weak chlorite and carbonate and locally weak fuchsite and is hosted in strongly altered andesites, in or at the contact of the rhyolite, or along the contacts with felsic porphyritic intrusions.

Qualified Person

The scientific and technical content of this news release has been reviewed, prepared and approved by Mr. Louis Grenier, M.Sc.A., P.Geo. (OGQ 800), Director of Exploration for Osisko's Windfall gold project, who is a "qualified person" as defined by National Instrument 43-101 - Standards of Disclosure for Mineral Projects ("NI 43-101").

Quality Control and Reporting Protocols

True width determination is estimated at 55-80% of the reported core length interval for the zone. Assays are

22.12.2025 Seite 6/8

uncut except where indicated. Intercepts occur within geological confines of major zones but have not been correlated to individual vein domains at this time. Reported intervals include minimum weighted averages of 3.5 g/t Au diluted over core lengths of at least 2.0 metres. NQ core assays were obtained by either 1-kilogram screen fire assay or standard 50-gram fire-assaying-AA finish or gravimetric finish at (i) ALS Laboratories in Val d'Or, Qu?bec, Vancouver, British Colombia, Lima, Peru or Vientiane, Laos (ii) Bureau Veritas in Timmins, Ontario. The 1-kilogram screen assay method is selected by the geologist when samples contain coarse gold or present a higher percentage of pyrite than surrounding intervals. Selected samples are also analyzed for multi-elements, including silver, using a Four Acid Digestion-ICP-MS method at ALS Laboratories. Drill program design, Quality Assurance/Quality Control ("QA/QC") and interpretation of results is performed by qualified persons employing a QA/QC program consistent with NI 43-101 and industry best practices. Standards and blanks are included with every 20 samples for QA/QC purposes by the Corporation as well as the lab. Approximately 5% of sample pulps are sent to secondary laboratories for check assay.

About the Windfall Gold Deposit

The Windfall gold deposit is located between Val-d'Or and Chibougamau in the Abitibi region of Qu?bec, Canada. The Mineral Resource Estimate ("MRE") defined by Osisko, as disclosed in the news release dated February 17, 2021 is supported by the technical report entitled "Preliminary Economic Assessment Update for the Windfall Project" dated April 26, 2021 (that includes Windfall Mineral Resource Estimate with an effective date of November 30, 2020), and assuming a cut-off grade of 3.50 g/t Au, comprises 521,000 tonnes at 11.3 g/t Au (189,000 ounces) in the measured mineral resource category, 5,502,000 tonnes at 9.4 g/t Au (1,668,000 ounces) in the indicated mineral resource category and 16,401,000 tonnes at 8.0 g/t Au (4,244,000 ounces) in the inferred mineral resource category. The key assumptions, parameters and methods used to estimate the mineral resource estimate disclosed in the February 17, 2021 news release are further described in the full technical report prepared by BBA Inc. in accordance with NI 43-101 and is available on SEDAR (www.sedar.com) under the Corporation's issuer profile. The Windfall gold deposit is currently one of the highest-grade resource-stage gold projects in Canada and has world-class scale. Mineralization occurs in three principal zones: Lynx, Main Zone, and Underdog. Mineralization is generally comprised of sub-vertical zones following intrusive porphyry contacts plunging to the northeast. The r esources are defined from surface to a depth of 1,600 metres as it now includes the Triple 8 (T8) zone. The resources excluding T8 are defined from surface to a depth of 1,200 metres. The deposit remains open along strike and at depth. Mineralization has been identified at surface in some areas and as deep as 2,625 metres in others with significant potential to extend mineralization down-plunge and at depth.

About Osisko Mining Inc.

Osisko is a mineral exploration company focused on the acquisition, exploration, and development of gold resource properties in Canada. Osisko holds a 100% interest in the high-grade Windfall gold deposit located between Val-d'Or and Chibougamau in Qu?bec and holds a 100% undivided interest in a large area of claims in the surrounding Urban Barry area and nearby Qu?villon area (over 2,600 square kilometres).

Cautionary Note Regarding Forward-Looking Information

This news release contains "forward-looking information" within the meaning of the applicable Canadian securities legislation that is based on expectations, estimates, projections and interpretations as at the date of this news release. Any statement that involves predictions, expectations, interpretations, beliefs, plans, projections, objectives, assumptions, future events or performance (often, but not always, using phrases such as "expects", or "does not expect", "is expected", "interpreted", "management's view", "anticipates" or "does not anticipate", "plans", "budget", "scheduled", "forecasts", "estimates", "potential", "feasibility", "believes" or "intends" or variations of such words and phrases or stating that certain actions, events or results "may" or "could", "would", "might" or "will" be taken to occur or be achieved) are not statements of historical fact and may be forward-looking information and are intended to identify forward-looking information. This news release contains the forward-looking information pertaining to, among other things: the Windfall gold deposit being one of the highest-grade resource-stage gold projects in Canada and having world-class scale; the key assumptions, parameters and methods used to estimate the mineral resource estimate disclosed in this news release; the prospects, if any, of the Windfall gold deposit; timing and ability of Osisko to file a technical report for the mineral resource estimate disclosed in this news release; the timing and ability of Osisko, if at all, to publish a feasibility study for the Windfall gold deposit; the amount and type of drilling to be completed and the timing to complete such drilling; the focus of the remaining infill drilling; the trend of grade increase; the Lynx zone remaining open to expansion down plunge; upgrading a inferred mineral resource to a measured mineral resource or indicated mineral resource category; future drilling at the Windfall gold deposit; the significance of historic exploration activities and results. Such factors include, among others, risks relating to the ability of exploration activities (including drill results) to accurately predict mineralization; errors in management's geological modelling; the ability of Osisko to complete further exploration activities, including (infill) drilling; property and royalty interests in the Windfall gold deposit; the ability of the Corporation to obtain required approvals; the results of exploration activities; risks relating to mining activities; the global economic climate; metal prices; dilution; environmental risks; and community and

22.12.2025 Seite 7/8

non-governmental actions. Although the forward-looking information contained in this news release is based upon what management believes, or believed at the time, to be reasonable assumptions, Osisko cannot assure shareholders and prospective purchasers of securities of the Corporation that actual results will be consistent with such forward-looking information, as there may be other factors that cause results not to be as anticipated, estimated or intended, and neither Osisko nor any other person assumes responsibility for the accuracy and completeness of any such forward-looking information. Osisko does not undertake, and assumes no obligation, to update or revise any such forward-looking statements or forward-looking information contained herein to reflect new events or circumstances, except as may be required by law.

CONTACT INFORMATION: John Burzynski Chief Executive Officer Telephone (416) 363-8653

Dieser Artikel stammt von Rohstoff-Welt.de Die URL für diesen Artikel lautet:

https://www.rohstoff-welt.de/news/401733--Osisko-Windfall-Drilling-Intercepts-Wide-High-Grade-in-Expansion-Holes.html

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2025. Es gelten unsere AGB und Datenschutzrichtlinen.

22.12.2025 Seite 8/8