

# Benz Mining: PhotonAssay Delivers Increase in Reported Gold and Confirms Coarse Gold

03.11.2021 | [Newsfile](#)

## HIGHLIGHTS

- PhotonAssay analysis of 18,143 samples (from 8,500kg of coarse crushed rejects) from the 2020 drilling campaign identifies more high-grade gold Eastmain Gold Project
- Results include
  - 39% increase in the number of reportable intercepts ( $>0.2\text{g/t Au}$ ) from 84 to 117
  - 80% increase in the number of high-grade intercepts ( $>8\text{g/t Au}$ ) from 5 to 9
  - 85% of reportable samples returned higher gold value by PhotonAssay
- Exclusivity agreement executed with MSA laboratories which will see the first PhotonAssay facility in North America
- The agreement will enable Benz to assay 20,000 samples per month, resulting in much faster turnaround and better gold detection
- Additional 7,500kg of coarse crushed material from the 2021 drilling campaign has arrived for PhotonAssay in Perth

Toronto, November 3, 2021 - [Benz Mining Corp.](#) (TSXV: BZ) (ASX: BNZ) (the Company or Benz) is pleased to provide an update on the recently completed PhotonAssay duplicate analysis. The campaign was a success with a substantial increase in both the overall amount of gold mineralised intervals and the number of high-grade ( $>8\text{g/t Au}$ ) intervals reported.

CEO Xavier Braud commented:

"PhotonAssay of material from our 2020 drilling campaign has delivered exceptional results, showing there is more gold in the system than previously reported. Despite running it on a relatively small number of samples, we can clearly see that this assay method is detecting more gold in most samples submitted. We went from 84 reportable intercepts (gold $>0.2\text{g/t}$ ) to 117. This is 39% more reportable gold than obtained from fire assay analysis.

"Out of 117 reportable samples, 99 have returned higher maximum values by PhotonAssay than by Fire Assay. This means that for 85% of samples, PhotonAssay yielded higher gold values

"In one instance, Fire Assay had returned  $<0.01\text{ g/t Au}$  and the best PhotonAssay came back at  $0.7\text{g/t Au}$  (a  $>13,900\%$  uplift). This turns a seemingly barren zone into a prospective area with strongly anomalous gold. In this instance, the  $0.7\text{g/t Au}$  result was even flagged as heterogeneous, confirming nugget effect. This is of prime importance - the nugget effect is the main attribute of true high grade gold deposits.

"This round of analysis fulfilled our expectations with regards to the assay method and pushed us to negotiate an exclusivity agreement with MSA laboratories on the first PhotonAssay laboratory to be installed in North America.

"This new laboratory will be setup in Val D'Or, Quebec, approximately 750km from the Eastmain Project and

will give Benz a much shorter turnaround time on drill core assay, solving a problem which has been impacting many explorers worldwide

"We have been fortunate that the abundance of visible gold at Eastmain has allowed us to keep drilling, knowing we are broadly exploring in the right place, but this agreement will certainly expedite our program going forward."

#### Fire Assays vs. PhotonAssay

In 2020, half core samples from our drilling program were assayed using conventional fire assays.

Fire assays are done on a finely pulverised 50g subsample of the half core sample submitted for assay. This widely accepted protocol is the norm for gold assays worldwide but it has proven to potentially introduce a sampling bias, especially in samples containing larger ( $>75\mu\text{m}$ ) gold particles. This phenomenon is usually known as nugget effect.

In February 2021, Benz Mining reported assay results from the maiden drilling campaign at its high-grade Eastmain Gold project in northern Quebec, Canada. (11 February 2021: Assays confirm the discovery of 2 new trends at Eastmain).

Gold assays at the time had been exclusively conducted using Fire Assay with AA or gravimetric finish. The high-grade nature of the deposit with the presence of coarse visible gold prompted Benz Mining to investigate the appropriateness of Chrysos' PhotonAssay technology, a high energy X-Ray fluorescence technology, to analyse samples from Eastmain.

8,500kg of coarse crush rejects were shipped from Canada, where the technology is not yet available commercially, to Perth, Australia where PhotonAssay has been available for gold assays since 2018.

Coarse crush rejects are the leftover material from a standard sample preparation for fire assays. In the case of the 2020 drilling campaign, samples were half NQ core samples. Core length for individual samples ranged between 0.3m and 1.6m with weights ranging from 850g to 4.5kg. Fire Assays were conducted on 50g subsamples, leaving between 800g and 4.45kg of sample potentially containing singled out gold particles not captured in the sub-sampling process.

#### Exclusivity Deal with MSA Laboratories:

Benz is pleased to report the execution of a services agreement with MSA Laboratories Ltd (MSALABS) guaranteeing exclusivity for a maximum of 20,000 analysis per month by PhotonAssay in MSALABS' Val d'Or laboratory in Quebec, at ongoing commercial rates.

The laboratory is expected to be operational on 1<sup>st</sup> December 2021 with a total nameplate analytical capacity of 40,000 samples per month, giving Benz up to 50% of the total laboratory capacity for an initial period of 12 months.

Benz is currently drilling over 1,200m of core per week. Sample intervals varies between 0.5m and 2m.

This analytical facility will also give Benz an opportunity to re-assay historical core, present on site at the Eastmain Gold project which was assayed by conventional Fire Assay in the past.

Table 1: Photon Assay results with Previously released Fire Assay Results (best assays  $>0.2\text{g/t Au}$  reported)

| Sample Number | Hole number | From | To | Length | Gold (g/t Au) by Fire Assay (best) | Gold (g/t Au) by Photon Assay (best) |
|---------------|-------------|------|----|--------|------------------------------------|--------------------------------------|
| A837201       | EM20-131    | 28.7 | 30 | 1.3    |                                    | 0.116                                |

| Sample Number | Hole number | From   | To     | Length | Gold (g/t Au) by Fire Assay (best) | Gold (g/t Au) by Photon Assay (best) |
|---------------|-------------|--------|--------|--------|------------------------------------|--------------------------------------|
| A837212       | EM20-131    | 51.7   | 52.5   | 0.8    | 0.244                              | 0.2                                  |
| A837214       | EM20-131    | 53.59  | 54.6   | 1.01   | 1.063                              | 1.5                                  |
| A837215       | EM20-131    | 54.6   | 55.6   | 1      | 0.487                              | 0.9                                  |
| A837232       | EM20-131    | 123    | 124    | 1      | 0.798                              | 0.8                                  |
| A837336       | EM20-132    | 122.6  | 123    | 0.4    | 0.137                              | 0.2                                  |
| A837424       | EM20-132    | 529.75 | 530.75 | 1      | 0.36                               | 0.5                                  |
| A837426       | EM20-132    | 531.75 | 532.75 | 1      | 39.602                             | 35.7                                 |
| A837429       | EM20-132    | 533.75 | 534.75 | 1      | 1.469                              | 1.2                                  |
| A837458       | EM20-132    | 570    | 571    | 1      | 1.256                              | 1.3                                  |
| A837576       | EM20-133    | 110.5  | 112    | 1.5    | 0.03                               | 0.2                                  |
| A837609       | EM20-133    | 189.5  | 191    | 1.5    | 0.043                              | 0.3                                  |
| A837635       | EM20-133    | 267    | 268.5  | 1.5    | 0.03                               | 0.3                                  |
| A838019       | EM20-134    | 424.15 | 424.45 | 0.3    | 0.188                              | 0.3                                  |
| A838028       | EM20-134    | 431    | 431.6  | 0.6    | 0.471                              | 0.6                                  |
| A838030       | EM20-134    | 432.3  | 432.8  | 0.5    | 9.25                               | 10.0                                 |
| A838031       | EM20-134    | 432.8  | 433.8  | 1      | 0.289                              | 0.3                                  |
| A838112       | EM20-135    | 53     | 53.3   | 0.3    | 0.218                              | 0.2                                  |
| A838122       | EM20-135    | 79.2   | 79.5   | 0.3    | 21.44                              | 18.1                                 |
| A838124       | EM20-135    | 79.8   | 80.1   | 0.3    | 0.703                              | 0.6                                  |
| A838686       | EM20-135    | 645    | 646.5  | 1.5    | 0.373                              | 0.5                                  |
| A838709       | EM20-135    | 668.4  | 669    | 0.6    | 0.012                              | 0.7                                  |
| A838719       | EM20-135    | 677    | 677.5  | 0.5    | 0.913                              | 1.0                                  |
| A838735       | EM20-135    | 695.5  | 697    | 1.5    | 0.208                              | 0.2                                  |
| A838344       | EM20-136    | 121.7  | 122    | 0.3    | 0.213                              | 0.1                                  |
| A838370       | EM20-136    | 235    | 236.45 | 1.45   | 0.091                              | 0.2                                  |
| A838371       | EM20-136    | 243    | 244    | 1      | 0.642                              | 0.2                                  |
| A838506       | EM20-136    | 454    | 455.5  | 1.5    | 3.301                              | 1.4                                  |
| A838564       | EM20-136    | 535    | 536.5  | 1.5    | 0.19                               | 0.2                                  |
| A838571       | EM20-136    | 544.3  | 545.3  | 1      | 0.159                              | 0                                    |
| A838577       | EM20-136    | 552    | 553.5  | 1.5    | 0.289                              | 0.3                                  |
| A838586       | EM20-136    | 562.6  | 563.85 | 1.25   | 0.496                              | 0.0                                  |
| A838594       | EM20-136    | 569.5  | 570.5  | 1      | 0.232                              | 0.0                                  |
| A838604       | EM20-136    | 578.5  | 579.5  | 1      | 0.111                              | 0.2                                  |
| A838605       | EM20-136    | 579.5  | 580.5  | 1      | 0.196                              | 0.0                                  |
| A838606       | EM20-136    | 580.5  | 581    | 0.5    | 0.32                               | 0.3                                  |
| A838607       | EM20-136    | 581    | 582    | 1      | 0.279                              | 0.6                                  |
| A838626       | EM20-136    | 605.5  | 607    | 1.5    | 0.095                              | 0.6                                  |
| A839017       | EM20-137    | 409.16 | 409.57 | 0.41   | 0.319                              | 0.1                                  |
| A839021       | EM20-137    | 410.38 | 411    | 0.62   | 1.28                               | 0.7                                  |
| A839022       | EM20-137    | 411    | 411.8  | 0.8    | 1.055                              | 1.3                                  |
| A839023       | EM20-137    | 411.8  | 412.49 | 0.69   | 0.24                               | 0                                    |
| A839026       | EM20-137    | 414    | 415.36 | 1.36   | 0.391                              | 0.5                                  |
| A839029       | EM20-137    | 417.5  | 417.9  | 0.4    | 0.506                              | 0.3                                  |
| A839082       | EM20-137    | 503    | 504    | 1      | 0.167                              | 0.4                                  |
| A839083       | EM20-137    | 504    | 504.58 | 0.58   | 5.699                              | 5.8                                  |
| A839084       | EM20-137    | 504.58 | 505    | 0.42   | 0.22                               | 0                                    |
| A839085       | EM20-137    | 505    | 505.5  | 0.5    | 2.797                              | 0.2                                  |
| A839089       | EM20-137    | 509    | 510    | 1      | 0.259                              | 0.3                                  |
| A839092       | EM20-137    | 512    | 513    | 1      | 0.318                              | 0.7                                  |
| A839093       | EM20-137    | 513    | 514    | 1      | 0.241                              | 0.8                                  |
| A839098       | EM20-137    | 519.5  | 521    | 1.5    | 2.791                              | 3.2                                  |
| A839109       | EM20-137    | 531    | 532.5  | 1.5    | 0.08                               | 0.2                                  |
| A839112       | EM20-137    | 535.5  | 537    | 1.5    | >0.005                             | 0.2                                  |
| A839237       | EM20-138    | 239.6  | 240.25 | 0.65   | 0.08                               | 0.5                                  |
| A839289       | EM20-138    | 312    | 313.5  | 1.5    | 0.04                               | 0.3                                  |
| A839290       | EM20-138    | 313.5  | 315    | 1.5    | 0.647                              | 0.6                                  |

| Sample Number | Hole number | From   | To     | Length | Gold (g/t Au) by Fire Assay (best) | Gold (g/t Au) by Photon Assay (best) |
|---------------|-------------|--------|--------|--------|------------------------------------|--------------------------------------|
| A839291       | EM20-138    | 315    | 316    | 1      | 0.123                              | 0.3                                  |
| A839298       | EM20-138    | 319.2  | 319.8  | 0.6    | 0.117                              | 0.2                                  |
| A839301       | EM20-138    | 321.25 | 322.3  | 1.05   | 0.206                              | 0.5                                  |
| A839309       | EM20-138    | 330    | 331    | 1      | 0.139                              | 0.2                                  |
| A839332       | EM20-138    | 357.7  | 359    | 1.3    | 0.018                              | 0.6                                  |
| A839391       | EM20-138    | 493.5  | 495    | 1.5    | 0.058                              | 0.3                                  |
| A839394       | EM20-138    | 496.6  | 497.35 | 0.75   | 0.206                              | 0                                    |
| A839396       | EM20-138    | 498    | 499    | 1      | 0.172                              | 0.2                                  |
| A839402       | EM20-138    | 501.7  | 502    | 0.3    | 0.185                              | 0.2                                  |
| A839408       | EM20-138    | 507    | 508    | 1      | 12.48                              | 14.                                  |
| A839409       | EM20-138    | 508    | 508.45 | 0.45   | 3.904                              | 3.8                                  |
| A839410       | EM20-138    | 508.45 | 509.5  | 1.05   | 3.93                               | 1.2                                  |
| A839476       | EM20-139    | 106    | 107    | 1      | 0.139                              | 0.2                                  |
| A839562       | EM20-139    | 285    | 286.5  | 1.5    | 0.049                              | 0.4                                  |
| A839711       | EM20-139    | 507    | 508.5  | 1.5    | >0.005                             | 0                                    |
| A839752       | EM20-140    | 94     | 95     | 1      | 0.327                              | 0                                    |
| A839757       | EM20-140    | 109    | 110.5  | 1.5    | 0.063                              | 1.2                                  |
| A839798       | EM20-140    | 345    | 346.5  | 1.5    | 0.859                              | 1.6                                  |
| A839861       | EM20-140    | 507    | 507.55 | 0.55   | 0.211                              | 0                                    |
| A839866       | EM20-140    | 510.4  | 510.95 | 0.55   | 2.072                              | 0.2                                  |
| A839867       | EM20-140    | 510.95 | 512.24 | 1.29   | 0.126                              | 0.6                                  |
| A839868*      | EM20-140    | 512.24 | 513    | 0.76   | 0.273                              |                                      |
| A839883       | EM20-140    | 524.58 | 525.35 | 0.77   | 0.2                                | 0.2                                  |
| A839896       | EM20-140    | 535.7  | 536    | 0.3    | 1.186                              | 1.3                                  |
| A839909       | EM20-140    | 549    | 550.5  | 1.5    | 0.028                              | 0.4                                  |
| A840024       | EM20-140    | 664    | 665    | 1      | 0.427                              | 0.6                                  |
| A840025       | EM20-140    | 665    | 666    | 1      | 0.431                              | 0.4                                  |
| A840030       | EM20-140    | 668.5  | 669.34 | 0.84   | 0.15                               | 0.4                                  |
| A840031       | EM20-140    | 669.34 | 669.8  | 0.46   | 0.477                              | 0.5                                  |
| A840048       | EM20-140    | 686.5  | 688    | 1.5    | 0.427                              | 1.0                                  |
| A840056       | EM20-140    | 695.6  | 696    | 0.4    | 0.45                               | 0.5                                  |
| A840057       | EM20-140    | 696    | 697    | 1      | 0.21                               | 0.3                                  |
| A840142*      | EM20-141    | 142    | 143.3  | 1.3    | 0.588                              |                                      |
| A840179       | EM20-141    | 176    | 177.5  | 1.5    | 0.66                               |                                      |
| A840209       | EM20-141    | 209.5  | 209.97 | 0.47   | 6.97                               | 8.7                                  |
| A840271*      | EM20-141    | 316.1  | 316.5  | 0.4    | 1.79                               |                                      |
| A840272*      | EM20-141    | 326.5  | 326.8  | 0.3    | 0.98                               |                                      |
| A840282*      | EM20-141    | 332.5  | 334    | 1.5    | 0.66                               |                                      |
| A840312*      | EM20-141    | 371    | 372    | 1      | 0.873                              |                                      |
| A840306       | EM20-141    | 365    | 366.5  | 1.5    | <0.01                              | 0.2                                  |
| A840349       | EM20-141    | 403    | 403.6  | 0.6    | 0.353                              | 0                                    |
| A840367       | EM20-141    | 417.5  | 418.5  | 1      | 0.937                              | 0.5                                  |
| A840368       | EM20-141    | 418.5  | 419    | 0.5    | 5.562                              | 6.2                                  |
| A840369       | EM20-141    | 419    | 420    | 1      | 0.967                              | 0.8                                  |
| A840370       | EM20-141    | 420    | 421    | 1      | 8.803                              | 19.6                                 |
| A840371       | EM20-141    | 421    | 421.8  | 0.8    | 0.425                              | 0.5                                  |
| A840372       | EM20-141    | 421.8  | 422.8  | 1      | 1.968                              | 2.5                                  |
| A840465       | EM20-141    | 561.33 | 562    | 0.67   | 0.315                              | 0.5                                  |
| A840467       | EM20-141    | 562.34 | 562.7  | 0.36   | 0.569                              | 0.6                                  |
| A840468       | EM20-141    | 562.7  | 563    | 0.3    | 0.236                              | 0.5                                  |
| A840471       | EM20-141    | 564.7  | 565.42 | 0.72   | 0.168                              | 0.2                                  |
| A840472       | EM20-141    | 565.42 | 565.79 | 0.37   | 85.029                             | 48.5                                 |
| A840474       | EM20-141    | 566.7  | 568    | 1.3    | 0.488                              | 0.5                                  |
| A840475       | EM20-141    | 568    | 568.5  | 0.5    | 0.175                              | 0.2                                  |
| A840612       | EM20-142    | 139.64 | 140.14 | 0.5    | 7.556                              | 6.3                                  |
| A840613       | EM20-142    | 140.14 | 141    | 0.86   | 6.924                              | 8                                    |

| Sample Number | Hole number | From   | To     | Length | Gold (g/t Au) by Fire Assay (best) | Gold (g/t Au) by Photon Assay (best) |
|---------------|-------------|--------|--------|--------|------------------------------------|--------------------------------------|
| A840614       | EM20-142    | 141    | 141.8  | 0.8    |                                    | 1.124                                |
| A840615       | EM20-142    | 141.8  | 143    | 1.2    |                                    | 1.25                                 |
| A840616       | EM20-142    | 143    | 144    | 1      |                                    | 4.375                                |
| A840617       | EM20-142    | 144    | 145    | 1      |                                    | 0.38                                 |
| A840645       | EM20-142    | 215.4  | 216    | 0.6    |                                    | 0.144                                |
| A840650       | EM20-142    | 219.62 | 220    | 0.38   |                                    | 0.058                                |
| A840658       | EM20-142    | 225.5  | 226.4  | 0.9    |                                    | 0.09                                 |
| A840662       | EM20-142    | 227.7  | 229.1  | 1.4    |                                    | 0.051                                |
| A840672       | EM20-142    | 238.4  | 240    | 1.6    |                                    | 0.033                                |
| A840687       | EM20-142    | 272.8  | 273.1  | 0.3    |                                    | 0.477                                |
| A840701       | EM20-142    | 284.93 | 285.38 | 0.45   |                                    | 0.624                                |

In total, 27 samples returned PhotonAssay results >0.2g/t Au while having only returned values <0.2g/t Au by Fire Assay. By comparison, 6 samples which had returned results >0.2g/t Au by Fire Assay have returned PhotonAssay results >0.2g/t Au.

Benz will duplicate these 6 samples by sampling ¼ of the core retained at the Eastmain Camp at another laboratory and then submit those samples to another analysis by PhotonAssay for verification.

The analysis of multiple duplicate samples is a requirement for resource estimation calculation. All the duplicate measurements obtained by both PhotonAssay and Fire Assay will be integrated in the Heterogeneity test, currently in progress and driven by world renowned expert Dominique François-Bongarçon.

The first part of the heterogeneity test was conducted under supervision from Dominique François-Bongarçon at SGS laboratories in Vancouver, BC on core samples from historical drillholes from the various ore zones of the Eastmain deposit. The second part of the test required pulps and coarse rejects from drill core samples submitted by Eastmain Resources in 2011 and 2016. Those pulps and rejects were in possession of Fury Gold in Toronto and the Covid lockdown of Toronto prevented Benz from collecting them. Following the end of the lockdown in Ontario, the samples were transferred to a warehouse in Chibougamau and subsequently shipped to the Eastmain Mine site. They are currently stored in one of the warehouses.

The second part of the heterogeneity test has commenced and Benz is looking forward to receiving the results of this test which will greatly help the next resource calculation

This press release was prepared under supervision and approved by Dr. Danielle Giovenazzo, P.Geo, acting as Benz's qualified person under National Instrument 43-101.

About Benz Mining Corp.

[Benz Mining Corp.](#) (TSXV: BZ) (ASX: BNZ) brings together an experienced team of geoscientists and finance professionals with a focused strategy to acquire and develop mineral projects with an emphasis on safe, low risk jurisdictions favourable to mining development. Benz is earning a 100% interest in the former producing high grade Eastmain gold mine, Ruby Hill West and Ruby Hill East projects in Quebec and owns 100% of the Windy Mountain Project.

About the Eastmain Gold Project

The Eastmain Gold Project, situated on the Upper Eastmain Greenstone Belt in Quebec, Canada, currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold (Indicated: 236,500oz at 8.2gpt gold, Inferred: 139,300oz at 7.5gpt gold). The existing gold mineralisation is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite in highly deformed and altered rocks making it amenable to detection using electromagnetic techniques. Multiple gold occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited but highly encouraging testing outside the existing resource area. Benz has subsequently identified over 160 DHEM

conductors over a strike length of 6km which is open in all directions.

Figure 1: Benz tenure over Upper Eastmain Greenstone Belt simplified geology.

To view an enhanced version of Figure 1, please visit:

[https://orders.newsfilecorp.com/files/1818/101815\\_5193b2b99437cb1d\\_001full.jpg](https://orders.newsfilecorp.com/files/1818/101815_5193b2b99437cb1d_001full.jpg)

On behalf of the Board of Directors of [Benz Mining Corp.](#)  
Xavier Braud, CEO

For more information please contact:

Paul Fowler  
Head of Corporate Development (Canada)  
[Benz Mining Corp.](#)  
Telephone: +1 416 356 8165  
Email: info@benzmining.com

Xavier Braud  
CEO, Head of Corporate Development (Aus)  
[Benz Mining Corp.](#)  
Telephone +61 8 6143 6702  
Email: info@benzmining.com

**Forward-Looking Information:** Certain statements contained in this news release may constitute "forward-looking information" as such term is used in applicable Canadian securities laws. Forward-looking information is based on plans, expectations and estimates of management at the date the information is provided and is subject to certain factors and assumptions, including, that the Company's financial condition and development plans do not change as a result of unforeseen events and that the Company obtains regulatory approval. Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as set forth in the Company's continuous disclosure filings filed under the Company's profile at [www.sedar.com](http://www.sedar.com). The Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

**Competent Person's Statements:** The information in this report that relates to Exploration Results is based on and fairly represents information and supporting information compiled by Mr Xavier Braud, who is a member of the Australian Institute of Geoscientists (AIG membership ID:6963). Mr Braud is a consultant to the Company and has sufficient experience in the style of mineralization and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Braud holds securities in [Benz Mining Corp.](#) and consents to the inclusion of all technical statements based on his information in the form and context in which they appear.

The information in this announcement that relates to the Inferred Mineral Resource was first reported under the JORC Code by the Company in its prospectus released to the ASX on 21 December 2020. The Company confirms that it is not aware of any new information or data that materially affects the information

included in the original market announcement and confirms that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

## Appendix 1: JORC Tables

### Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria                                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques                            | <ul style="list-style-type: none"><li>● Nature and quality of sampling (eg cut channels, random chip measurement tools appropriate to the minerals under investigation or handheld XRF instruments, etc). These examples should not be limited to those listed.</li><li>● Include reference to measures taken to ensure sample representativeness, including details of any measurement tools or systems used.</li><li>● Aspects of the determination of mineralisation that are Material.</li><li>● In cases where 'industry standard' work has been done this will normally be acceptable provided the results are clearly stated. In other cases more explanation may be required, particularly if the mineralisation is complex or if the commodity is gold that has inherent sampling problems. Unusual commodity nodules may warrant disclosure of detailed information.</li></ul> |
| Drilling techniques                            | <ul style="list-style-type: none"><li>● Drill type (eg core, reverse circulation, open-hole hammer, rock saw, auger, etc) and details (eg core diameter, triple or standard tube, depth of penetration, sample spacing, orientation, whether cored or oriented and if so, by what method, etc).</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Drill sample recovery                          | <ul style="list-style-type: none"><li>● Method of recording and assessing core and chip sample recovery and details (eg core diameter, triple or standard tube, depth of penetration, sample spacing, orientation, whether cored or oriented and if so, by what method, etc).</li><li>● Measures taken to maximise sample recovery and ensure representative samples.</li><li>● Whether a relationship exists between sample recovery and assay grade and if so, whether this has occurred due to preferential loss/gain of fine/coarse material.</li></ul>                                                                                                                                                                                                                                                                                                                              |
| Logging                                        | <ul style="list-style-type: none"><li>● Whether core and chip samples have been geologically and geographically logged in sufficient detail to support appropriate Mineral Resource estimation, mining studies and operational planning.</li><li>● Whether logging is qualitative or quantitative in nature. Core length and percentage of the relevant intersections logged.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sub-sampling techniques and sample preparation | <ul style="list-style-type: none"><li>● If core, whether cut or sawn and whether quarter, half or all cut.</li><li>● If non-core, whether riffled, tube sampled, rotary split, etc and whether拒采.</li><li>● For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li><li>● Quality control procedures adopted for all sub-sampling stages.</li><li>● Measures taken to ensure that the sampling is representative, for instance results for field duplicate/second-half sampling.</li><li>● Whether sample sizes are appropriate to the grain size of the material.</li></ul>                                                                                                                                                                                                                                                              |

Criteria

JORC Code explanation

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, determining the analysis including instrument make and model, applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, checks) and whether acceptable levels of accuracy (ie lack of bias) are established.

Verification of sampling and assaying

- The verification of significant intersections by either independent or duplicate testing.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data validation procedures, methods of internal and external quality control data, and statistics used to evaluate data consistency and reliability.
- Discuss any adjustment to assay data.

Location of data points

- Accuracy and quality of surveys used to locate drill holes (control workings and other locations used in Mineral Resource estimation).
- Specification of the grid system used.
- Quality and adequacy of topographic control.

Data spacing and distribution

- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the continuity appropriate for the Mineral Resource and Ore Reserve classifications applied.
- Whether sample compositing has been applied.

Orientation of data in relation to geological structure

- Whether the orientation of sampling achieves unbiased sampling, which this is known, considering the deposit type.
- If the relationship between the drilling orientation and the orientation is considered to have introduced a sampling bias, this should be explained.

Sample security

- The measures taken to ensure sample security.

Audits or reviews

- The results of any audits or reviews of sampling techniques and data used in the Mineral Resource estimate.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Mineral tenement and land tenure status

- Type, reference name/number, location and ownership of the mineral tenement and land tenure, including all parties such as joint ventures, partnerships, overlying landholders, and any areas within a national park or wilderness or national park and environmental sensitive areas.
- The security of the tenure held at the time of reporting, including any relevant lease, permit or licence to operate in the area.

Criteria

JORC Code explanation

Exploration done by other parties

- Acknowledgment and appraisal of exploration by other parties

Geology

- Deposit type, geological setting and style of mineralization

## Criteria

## JORC Code explanation

## Drill hole Information

- A summary of all information material to the understanding of the following information for all Material drill holes:
  - easting and northing of the drill hole collar
  - elevation or RL (Reduced Level - elevation)
  - dip and azimuth of the hole
  - down hole length and interception depth
  - hole length.
- If the exclusion of this information is justified on the basis that the exclusion does not detract from the understanding, explain why this is the case.

## Data aggregation methods

- In reporting Exploration Results, weighting averaging techniques, truncations (eg cutting of high grades) and cut-off grades used should be clearly stated. Where aggregate intercepts incorporate short lengths of high grade results, the procedure used for such aggregations should be clearly stated.
- The assumptions used for any reporting of meta-data.

## Relationship between mineralisation widths and intercept lengths

- These relationships are particularly important in reporting Exploration Results.
- If the geometry of the mineralisation with respect to the drill hole collar is such that the true width of the mineralisation cannot be determined, this should be clearly stated.
- If it is not known and only the down hole length is reported, the effect (eg 'down hole length, true width not known).

## Diagrams

- Appropriate maps and sections (with scales) and tables should be presented for significant discovery being reported. These should show the collar locations and appropriate sectional views.

## Balanced reporting

- Where comprehensive reporting of all Exploration Results is practicable, both low and high grades and/or widths should be reported.

## Other substantive exploration data

- Other exploration data, if meaningful and material to an assessment of resource potential, should be presented. This could include geological observations; geophysical survey results; geochemical survey results; method of treatment; metallurgical test results; bulk samples characteristics; potential deleterious or contaminating factors.

## Further work

- The nature and scale of planned further work (eg additional drilling, large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, interpretations and future drilling areas, provided these are meaningful.

## Appendix 2: Drilling data

Table 1: Drillhole collars

| HOLE_ID  | UTMx_East (m) | UTMy_North (m) | Elevation (m) | Total Depth (m) | Azimuth (°) | Dip (°)* |
|----------|---------------|----------------|---------------|-----------------|-------------|----------|
| EM20-131 | 699870        | 5797522        | 493           | 327             | 215         | -55      |
| EM20-132 | 701235        | 5798026        | 482           | 697             | 215         | -85      |
| EM20-133 | 701122        | 5798037        | 482           | 597             | 196         | -85      |
| EM20-134 | 700232        | 5798516        | 491           | 552             | 201         | -85      |
| EM20-135 | 700873        | 5798374        | 479           | 726             | 200         | -85      |
| EM20-136 | 701371        | 5798071        | 484           | 678             | 200         | -80      |
| EM20-137 | 700223        | 5798049        | 489           | 555             | 211         | -75      |

|          |        |         |     |     |     |     |
|----------|--------|---------|-----|-----|-----|-----|
| EM20-138 | 699219 | 5798856 | 482 | 624 | 225 | -75 |
| EM20-139 | 699474 | 5798605 | 477 | 600 | 205 | -78 |
| EM20-140 | 700871 | 5798386 | 479 | 777 | 141 | -78 |
| EM20-141 | 700320 | 5798046 | 487 | 669 | 210 | -75 |
| EM20-142 | 701099 | 5797364 | 510 | 309 | 215 | -60 |

\*Down dip is negative

Table 2: Complete PhotonAssay results for reportable samples with original fire assays results for reference

| Hole number | From   | To     | Length | Original Sample Number | Gold (g/t Au) by Fire Assay (best) | Photon Assay Sample |
|-------------|--------|--------|--------|------------------------|------------------------------------|---------------------|
| EM20-131    | 28.7   | 30     | 1.3    | A837201                | 0.116                              | A837201_J1          |
|             |        |        |        |                        |                                    | A837201_J2          |
|             |        |        |        |                        |                                    | A837201_J3          |
|             |        |        |        |                        |                                    | A837201_J4          |
|             |        |        |        |                        |                                    | A837201_J5          |
|             |        |        |        |                        |                                    | A837201_J6          |
| EM20-131    | 51.7   | 52.5   | 0.80   | A837212                | 0.244                              | A837212_J1          |
|             |        |        |        |                        |                                    | A837212_J2          |
|             |        |        |        |                        |                                    | A837212_J3          |
| EM20-131    | 53.59  | 54.6   | 1.01   | A837214                | 1.063                              | A837214_J1          |
|             |        |        |        |                        |                                    | A837214_J2          |
|             |        |        |        |                        |                                    | A837214_J3          |
|             |        |        |        |                        |                                    | A837214_J4          |
|             |        |        |        |                        |                                    | A837214_J5          |
| EM20-131    | 54.6   | 55.6   | 1.00   | A837215                | 0.487                              | A837215_J1          |
|             |        |        |        |                        |                                    | A837215_J2          |
|             |        |        |        |                        |                                    | A837215_J3          |
| EM20-131    | 123    | 124    | 1.00   | A837232                | 0.798                              | A837232_J1          |
|             |        |        |        |                        |                                    | A837232_J2          |
|             |        |        |        |                        |                                    | A837232_J3          |
|             |        |        |        |                        |                                    | A837232_J4          |
|             |        |        |        |                        |                                    | A837232_J5          |
| EM20-132    | 122.6  | 123    | 0.4    | A837336                | 0.137                              | A837336_J1          |
| EM20-132    | 529.75 | 530.75 | 1      | A837424                | 0.36                               | A837424_J1          |
|             |        |        |        |                        |                                    | A837424_J2          |
|             |        |        |        |                        |                                    | A837424_J3          |
|             |        |        |        |                        |                                    | A837424_J4          |
|             |        |        |        |                        |                                    | A837424_J5          |
| EM20-132    | 531.75 | 532.75 | 1      | A837426                | 39.602                             | A837426_J1          |
|             |        |        |        |                        |                                    | A837426_J2          |
|             |        |        |        |                        |                                    | A837426_J3          |
|             |        |        |        |                        |                                    | A837426_J4          |
|             |        |        |        |                        |                                    | A837426_J5          |
| EM20-132    | 533.75 | 534.75 | 1      | A837429                | 1.469                              | A837429_J1          |
|             |        |        |        |                        |                                    | A837429_J2          |
|             |        |        |        |                        |                                    | A837429_J3          |
|             |        |        |        |                        |                                    | A837429_J4          |
|             |        |        |        |                        |                                    | A837429_J5          |
| EM20-132    | 570.00 | 571.00 | 1      | A837458                | 1.256                              | A837458_J1          |
|             |        |        |        |                        |                                    | A837458_J2          |
|             |        |        |        |                        |                                    | A837458_J3          |
|             |        |        |        |                        |                                    | A837458_J4          |
| EM20-133    | 110.5  | 112    | 1.5    | A837576                | 0.03                               | A837576_J1          |
|             |        |        |        |                        |                                    | A837576_J2          |
|             |        |        |        |                        |                                    | A837576_J3          |
|             |        |        |        |                        |                                    | A837576_J4          |

| Hole number  | From   | To     | Length | Original Sample Number | Gold (g/t Au) | by Fire Assay (best) | Photon Assay Sample |
|--------------|--------|--------|--------|------------------------|---------------|----------------------|---------------------|
|              |        |        |        |                        |               |                      | A837576_J5          |
|              |        |        |        |                        |               |                      | A837576_J6          |
|              |        |        |        |                        |               |                      | A837576_J7          |
| EM20-133     | 189.5  | 191    | 1.5    | A837609                |               | 0.043                | A837609_J1          |
|              |        |        |        |                        |               |                      | A837609_J2          |
|              |        |        |        |                        |               |                      | A837609_J3          |
|              |        |        |        |                        |               |                      | A837609_J4          |
|              |        |        |        |                        |               |                      | A837609_J5          |
|              |        |        |        |                        |               |                      | A837609_J6          |
|              |        |        |        |                        |               |                      | A837609_J7          |
| EM20-133     | 267    | 268.5  | 1.5    | A837635                |               | 0.03                 | A837635_J1          |
|              |        |        |        |                        |               |                      | A837635_J2          |
|              |        |        |        |                        |               |                      | A837635_J3          |
|              |        |        |        |                        |               |                      | A837635_J4          |
|              |        |        |        |                        |               |                      | A837635_J5          |
|              |        |        |        |                        |               |                      | A837635_J6          |
|              |        |        |        |                        |               |                      | A837635_J7          |
| EM20-134     | 424.15 | 424.45 | 0.3    | A838019                |               | 0.188                | A838019_J1          |
| EM20-134     | 431    | 431.6  | 0.6    | A838028                |               | 0.471                | A838028_J1          |
|              |        |        |        |                        |               |                      | A838028_J2          |
|              |        |        |        |                        |               |                      | A838028_J3          |
| EM20-134     | 432.3  | 432.8  | 0.5    | A838030                |               | 9.25                 | A838030_J1          |
| EM20-134     | 432.8  | 433.8  | 1      | A838031                |               | 0.289                | A838031_J1          |
|              |        |        |        |                        |               |                      | A838031_J2          |
|              |        |        |        |                        |               |                      | A838031_J3          |
|              |        |        |        |                        |               |                      | A838031_J4          |
|              |        |        |        |                        |               |                      | A838031_J5          |
| EM20-135     | 53     | 53.3   | 0.3    | A838112                |               | 0.218                | A838112_J1          |
| EM20-135     | 79.2   | 79.5   | 0.3    | A838122                |               | 21.44                | A838122_J1          |
| EM20-135     | 79.8   | 80.1   | 0.3    | A838124                |               | 0.703                | A838124_J1          |
| EM20-135 EXT | 645    | 646.5  | 1.5    | A838686                |               | 0.373                | A838686_J1          |
|              |        |        |        |                        |               |                      | A838686_J2          |
|              |        |        |        |                        |               |                      | A838686_J3          |
|              |        |        |        |                        |               |                      | A838686_J4          |
|              |        |        |        |                        |               |                      | A838686_J5          |
|              |        |        |        |                        |               |                      | A838686_J6          |
|              |        |        |        |                        |               |                      | A838686_J7          |
| EM20-135 EXT | 668.4  | 669    | 0.6    | A838709                |               | 0.012                | A838709_J1          |
| EM20-135 EXT | 677    | 677.5  | 0.5    | A838719                |               | 0.913                | A838719_J1          |
|              |        |        |        |                        |               |                      | A838719_J2          |
|              |        |        |        |                        |               |                      | A838719_J3          |
| EM20-135 EXT | 695.5  | 697    | 1.5    | A838735                |               | 0.208                | A838735_J1          |
|              |        |        |        |                        |               |                      | A838735_J2          |
|              |        |        |        |                        |               |                      | A838735_J3          |
|              |        |        |        |                        |               |                      | A838735_J4          |
|              |        |        |        |                        |               |                      | A838735_J5          |
|              |        |        |        |                        |               |                      | A838735_J6          |
|              |        |        |        |                        |               |                      | A838735_J7          |
| EM20-136     | 121.7  | 122    | 0.3    | A838344                |               | 0.213                | A838344_J1          |
| EM20-136     | 235    | 236.45 | 1.45   | A838370                |               | 0.091                | A838370_J1          |
|              |        |        |        |                        |               |                      | A838370_J2          |
|              |        |        |        |                        |               |                      | A838370_J3          |
|              |        |        |        |                        |               |                      | A838370_J4          |
|              |        |        |        |                        |               |                      | A838370_J5          |

| Hole number | From  | To     | Length | Original Sample Number | Gold (g/t Au) by Fire Assay (best) | Photon Assay Sample                                                                            |
|-------------|-------|--------|--------|------------------------|------------------------------------|------------------------------------------------------------------------------------------------|
| EM20-136    | 243   | 244    | 1      | A838371                | 0.642                              | A838371_J1<br>A838371_J2<br>A838371_J3                                                         |
| EM20-136    | 454   | 455.5  | 1.5    | A838506                | 3.301                              | A838506_J1<br>A838506_J2<br>A838506_J3<br>A838506_J4<br>A838506_J5<br>A838506_J6<br>A838506_J7 |
| EM20-136    | 535   | 536.5  | 1.5    | A838564                | 0.19                               | A838564_J1<br>A838564_J2<br>A838564_J3<br>A838564_J4<br>A838564_J5<br>A838564_J6<br>A838564_J7 |
| EM20-136    | 544.3 | 545.3  | 1      | A838571                | 0.159                              | A838571_J1<br>A838571_J2<br>A838571_J3<br>A838571_J4                                           |
| EM20-136    | 552   | 553.5  | 1.5    | A838577                | 0.289                              | A838577_J1<br>A838577_J2<br>A838577_J3<br>A838577_J4<br>A838577_J5<br>A838577_J6<br>A838577_J7 |
| EM20-136    | 562.6 | 563.85 | 1.25   | A838586                | 0.496                              | A838586_J1<br>A838586_J2<br>A838586_J3<br>A838586_J4<br>A838586_J5                             |
| EM20-136    | 569.5 | 570.5  | 1      | A838594                | 0.232                              | A838594_J1<br>A838594_J2<br>A838594_J3<br>A838594_J4<br>A838594_J5<br>A838594_J6               |
| EM20-136    | 578.5 | 579.5  | 1      | A838604                | 0.111                              | A838604_J1<br>A838604_J2<br>A838604_J3<br>A838604_J4                                           |
| EM20-136    | 579.5 | 580.5  | 1      | A838605                | 0.196                              | A838605_J1<br>A838605_J2<br>A838605_J3<br>A838605_J4                                           |
| EM20-136    | 580.5 | 581    | 0.5    | A838606                | 0.32                               | A838606_J1<br>A838606_J2                                                                       |
| EM20-136    | 581   | 582    | 1      | A838607                | 0.279                              | A838607_J1<br>A838607_J2<br>A838607_J3<br>A838607_J4                                           |
| EM20-136    | 605.5 | 607    | 1.5    | A838626                | 0.095                              | A838626_J1<br>A838626_J2<br>A838626_J3                                                         |

| Hole number | From   | To     | Length | Original Sample Number | Gold (g/t Au) | by Fire Assay (best) | Photon Assay | Sample |
|-------------|--------|--------|--------|------------------------|---------------|----------------------|--------------|--------|
|             |        |        |        |                        |               |                      | A838626_J4   |        |
|             |        |        |        |                        |               |                      | A838626_J5   |        |
|             |        |        |        |                        |               |                      | A838626_J6   |        |
|             |        |        |        |                        |               |                      | A838626_J7   |        |
| EM20-137    | 409.16 | 409.57 | 0.41   | A839017                | 0.319         | A839017_J1           |              |        |
| EM20-137    | 410.38 | 411    | 0.62   | A839021                | 1.28          | A839021_J1           |              |        |
| EM20-137    | 411    | 411.8  | 0.8    | A839022                | 1.055         | A839022_J1           |              |        |
|             |        |        |        |                        |               |                      | A839022_J2   |        |
|             |        |        |        |                        |               |                      | A839022_J3   |        |
| EM20-137    | 411.8  | 412.49 | 0.69   | A839023                | 0.24          | A839023_J1           |              |        |
| EM20-137    | 414    | 415.36 | 1.36   | A839026                | 0.391         | A839026_J1           |              |        |
|             |        |        |        |                        |               |                      | A839026_J2   |        |
|             |        |        |        |                        |               |                      | A839026_J3   |        |
|             |        |        |        |                        |               |                      | A839026_J4   |        |
|             |        |        |        |                        |               |                      | A839026_J5   |        |
| EM20-137    | 417.5  | 417.9  | 0.4    | A839029                | 0.506         | A839029_J1           |              |        |
| EM20-137    | 503    | 504    | 1      | A839082                | 0.167         | A839082_J1           |              |        |
|             |        |        |        |                        |               |                      | A839082_J2   |        |
|             |        |        |        |                        |               |                      | A839082_J3   |        |
|             |        |        |        |                        |               |                      | A839082_J4   |        |
| EM20-137    | 504    | 504.58 | 0.58   | A839083                | 5.699         | A839083_J1           |              |        |
| EM20-137    | 504.58 | 505    | 0.42   | A839084                | 0.22          | A839084_J1           |              |        |
| EM20-137    | 505    | 505.5  | 0.5    | A839085                | 2.797         | A839085_J1           |              |        |
| EM20-137    | 509    | 510    | 1      | A839089                | 0.259         | A839089_J1           |              |        |
|             |        |        |        |                        |               |                      | A839089_J2   |        |
|             |        |        |        |                        |               |                      | A839089_J3   |        |
|             |        |        |        |                        |               |                      | A839089_J4   |        |
| EM20-137    | 512    | 513    | 1      | A839092                | 0.318         | A839092_J1           |              |        |
|             |        |        |        |                        |               |                      | A839092_J2   |        |
|             |        |        |        |                        |               |                      | A839092_J3   |        |
|             |        |        |        |                        |               |                      | A839092_J4   |        |
| EM20-137    | 513    | 514    | 1      | A839093                | 0.241         | A839093_J1           |              |        |
|             |        |        |        |                        |               |                      | A839093_J2   |        |
|             |        |        |        |                        |               |                      | A839093_J3   |        |
|             |        |        |        |                        |               |                      | A839093_J4   |        |
| EM20-137    | 519.5  | 521    | 1.5    | A839098                | 2.791         | A839098_J1           |              |        |
|             |        |        |        |                        |               |                      | A839098_J2   |        |
|             |        |        |        |                        |               |                      | A839098_J3   |        |
|             |        |        |        |                        |               |                      | A839098_J4   |        |
|             |        |        |        |                        |               |                      | A839098_J5   |        |
| EM20-137    | 531    | 532.5  | 1.5    | A839109                | 0.08          | A839109_J1           |              |        |
|             |        |        |        |                        |               |                      | A839109_J2   |        |
|             |        |        |        |                        |               |                      | A839109_J3   |        |
|             |        |        |        |                        |               |                      | A839109_J4   |        |
|             |        |        |        |                        |               |                      | A839109_J5   |        |
|             |        |        |        |                        |               |                      | A839109_J6   |        |
| EM20-137    | 535.5  | 537    | 1.5    | A839112                | 0.005         | A839112_J1           |              |        |
|             |        |        |        |                        |               |                      | A839112_J2   |        |
|             |        |        |        |                        |               |                      | A839112_J3   |        |
|             |        |        |        |                        |               |                      | A839112_J4   |        |
|             |        |        |        |                        |               |                      | A839112_J5   |        |

| Hole number | From   | To     | Length | Original Sample Number | Gold (g/t Au) | by Fire Assay (best) | Photon Assay | Sample |
|-------------|--------|--------|--------|------------------------|---------------|----------------------|--------------|--------|
| EM20-138    | 239.6  | 240.25 | 0.65   | A839237                |               | 0.08                 | A839112_J6   |        |
| EM20-138    | 312    | 313.5  | 1.5    | A839289                |               | 0.04                 | A839237_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839237_J2   |        |
| EM20-138    | 313.5  | 315    | 1.5    | A839290                |               | 0.647                | A839289_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839289_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839289_J3   |        |
| EM20-138    |        |        |        |                        |               |                      | A839289_J4   |        |
| EM20-138    |        |        |        |                        |               |                      | A839289_J5   |        |
| EM20-138    |        |        |        |                        |               |                      | A839289_J6   |        |
| EM20-138    | 315    | 316    | 1      | A839291                |               | 0.123                | A839290_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839290_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839290_J3   |        |
| EM20-138    |        |        |        |                        |               |                      | A839290_J4   |        |
| EM20-138    |        |        |        |                        |               |                      | A839290_J5   |        |
| EM20-138    | 319.2  | 319.8  | 0.6    | A839298                |               | 0.117                | A839298_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839298_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839298_J3   |        |
| EM20-138    | 321.25 | 322.3  | 1.05   | A839301                |               | 0.206                | A839301_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839301_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839301_J3   |        |
| EM20-138    | 330    | 331    | 1      | A839309                |               | 0.139                | A839309_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839309_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839309_J3   |        |
| EM20-138    | 357.7  | 359    | 1.3    | A839332                |               | 0.018                | A839332_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839332_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839332_J3   |        |
| EM20-138    |        |        |        |                        |               |                      | A839332_J4   |        |
| EM20-138    |        |        |        |                        |               |                      | A839332_J5   |        |
| EM20-138    | 493.5  | 495    | 1.5    | A839391                |               | 0.058                | A839391_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839391_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839391_J3   |        |
| EM20-138    |        |        |        |                        |               |                      | A839391_J4   |        |
| EM20-138    |        |        |        |                        |               |                      | A839391_J5   |        |
| EM20-138    |        |        |        |                        |               |                      | A839391_J6   |        |
| EM20-138    | 496.6  | 497.35 | 0.75   | A839394                |               | 0.206                | A839394_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839394_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839394_J3   |        |
| EM20-138    | 498    | 499    | 1      | A839396                |               | 0.172                | A839396_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839396_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839396_J3   |        |
| EM20-138    |        |        |        |                        |               |                      | A839396_J4   |        |
| EM20-138    | 501.7  | 502    | 0.3    | A839402                |               | 0.185                | A839402_J1   |        |
| EM20-138    | 507    | 508    | 1      | A839408                |               | 12.48                | A839408_J1   |        |
| EM20-138    |        |        |        |                        |               |                      | A839408_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839408_J3   |        |
| EM20-138    |        |        |        |                        |               |                      | A839408_J4   |        |
| EM20-138    |        |        |        |                        |               |                      | A839408_J5   |        |
| EM20-138    | 508    | 508.45 | 0.45   | A839409                |               | 3.904                | A839409_J1   |        |
| EM20-138    | 508.45 | 509.5  | 1.05   | A839410                |               | 3.93                 | A839409_J2   |        |
| EM20-138    |        |        |        |                        |               |                      | A839410_J1   |        |

| Hole number | From   | To     | Length | Original Sample Number | Gold (g/t Au) | by Fire Assay (best) | Photon Assay | Sample |
|-------------|--------|--------|--------|------------------------|---------------|----------------------|--------------|--------|
| EM20-139    | 106    | 107    | 1      | A839476                | 0.139         |                      | A839410_J2   |        |
|             |        |        |        |                        |               |                      | A839410_J3   |        |
|             |        |        |        |                        |               |                      | A839410_J4   |        |
| EM20-139    | 285    | 286.5  | 1.5    | A839562                | 0.049         |                      | A839476_J1   |        |
|             |        |        |        |                        |               |                      | A839476_J2   |        |
|             |        |        |        |                        |               |                      | A839476_J3   |        |
|             |        |        |        |                        |               |                      | A839476_J4   |        |
| EM20-139    | 507    | 508.5  | 1.5    | A839711                | 0.005         |                      | A839562_J1   |        |
|             |        |        |        |                        |               |                      | A839562_J2   |        |
|             |        |        |        |                        |               |                      | A839562_J3   |        |
|             |        |        |        |                        |               |                      | A839562_J4   |        |
|             |        |        |        |                        |               |                      | A839562_J5   |        |
|             |        |        |        |                        |               |                      | A839562_J6   |        |
|             |        |        |        |                        |               |                      | A839562_J7   |        |
| EM20-140    | 94     | 95     | 1      | A839752                | 0.327         |                      | A839711_J1   |        |
|             |        |        |        |                        |               |                      | A839711_J2   |        |
|             |        |        |        |                        |               |                      | A839711_J3   |        |
|             |        |        |        |                        |               |                      | A839711_J4   |        |
|             |        |        |        |                        |               |                      | A839711_J5   |        |
|             |        |        |        |                        |               |                      | A839711_J6   |        |
| EM20-140    | 109    | 110.5  | 1.5    | A839757                | 0.063         |                      | A839752_J1   |        |
|             |        |        |        |                        |               |                      | A839752_J2   |        |
|             |        |        |        |                        |               |                      | A839752_J3   |        |
|             |        |        |        |                        |               |                      | A839752_J4   |        |
|             |        |        |        |                        |               |                      | A839752_J5   |        |
|             |        |        |        |                        |               |                      | A839757_J1   |        |
|             |        |        |        |                        |               |                      | A839757_J2   |        |
|             |        |        |        |                        |               |                      | A839757_J3   |        |
|             |        |        |        |                        |               |                      | A839757_J4   |        |
|             |        |        |        |                        |               |                      | A839757_J5   |        |
|             |        |        |        |                        |               |                      | A839757_J6   |        |
|             |        |        |        |                        |               |                      | A839757_J7   |        |
| EM20-140    | 345    | 346.5  | 1.5    | A839798                | 0.859         |                      | A839798_J1   |        |
|             |        |        |        |                        |               |                      | A839798_J2   |        |
|             |        |        |        |                        |               |                      | A839798_J3   |        |
|             |        |        |        |                        |               |                      | A839798_J4   |        |
|             |        |        |        |                        |               |                      | A839798_J5   |        |
|             |        |        |        |                        |               |                      | A839798_J6   |        |
|             |        |        |        |                        |               |                      | A839798_J7   |        |
| EM20-140    | 507    | 507.55 | 0.55   | A839861                | 0.211         |                      | A839861_J1   |        |
| EM20-140    | 510.4  | 510.95 | 0.55   | A839866                | 2.072         |                      | A839866_J1   |        |
|             |        |        |        |                        |               |                      | A839866_J2   |        |
| EM20-140    | 510.95 | 512.24 | 1.29   | A839867                | 0.126         |                      | A839867_J1   |        |
|             |        |        |        |                        |               |                      | A839867_J2   |        |
|             |        |        |        |                        |               |                      | A839867_J3   |        |
|             |        |        |        |                        |               |                      | A839867_J4   |        |
|             |        |        |        |                        |               |                      | A839867_J5   |        |
|             |        |        |        |                        |               |                      | A839867_J6   |        |
| EM20-140    | 524.58 | 525.35 | 0.77   | A839883                | 0.2           |                      | A839883_J1   |        |
|             |        |        |        |                        |               |                      | A839883_J2   |        |
|             |        |        |        |                        |               |                      | A839883_J3   |        |
| EM20-140    | 535.7  | 536    | 0.3    | A839896                | 1.186         |                      | A839896_J1   |        |
| EM20-140    | 549    | 550.5  | 1.5    | A839909                | 0.028         |                      | A839909_J1   |        |
|             |        |        |        |                        |               |                      | A839909_J2   |        |
|             |        |        |        |                        |               |                      | A839909_J3   |        |
|             |        |        |        |                        |               |                      | A839909_J4   |        |

| Hole number | From   | To     | Length | Original Sample Number | Gold (g/t Au) | by Fire Assay (best) | Photon Assay | Sample     |
|-------------|--------|--------|--------|------------------------|---------------|----------------------|--------------|------------|
| EM20-140    | 664    | 665    | 1      | A840024                |               | 0.427                | A839909_J5   | A839909_J6 |
| EM20-140    | 665    | 666    | 1      | A840025                |               | 0.431                | A840024_J1   | A840024_J2 |
| EM20-140    | 668.5  | 669.34 | 0.84   | A840030                |               | 0.15                 | A840024_J3   | A840024_J4 |
| EM20-140    | 669.34 | 669.8  | 0.46   | A840031                |               | 0.477                | A840030_J1   | A840030_J2 |
| EM20-140    | 686.5  | 688    | 1.5    | A840048                |               | 0.427                | A840030_J3   | A840030_J4 |
| EM20-140    | 695.6  | 696    | 0.4    | A840056                |               | 0.45                 | A840048_J1   | A840048_J2 |
| EM20-140    | 696    | 697    | 1      | A840057                |               | 0.21                 | A840048_J3   | A840048_J4 |
| EM20-141    | 209.5  | 209.97 | 0.47   | A840209                |               | 7.861                | A840048_J5   | A840048_J6 |
| EM20-141    | 365    | 366.5  | 1.5    | A840306                |               | 0.005                | A840209_J1   | A840209_J2 |
| EM20-141    | 403    | 403.6  | 0.6    | A840349                |               | 0.353                | A840209_J3   | A840209_J4 |
| EM20-141    | 417.5  | 418.5  | 1      | A840367                |               | 0.937                | A840209_J5   | A840209_J6 |
| EM20-141    | 418.5  | 419    | 0.5    | A840368                |               | 5.562                | A840367_J1   | A840367_J2 |
| EM20-141    | 419    | 420    | 1      | A840369                |               | 0.967                | A840367_J3   | A840367_J4 |
| EM20-141    | 420    | 421    | 1      | A840370                |               | 8.803                | A840368_J1   | A840368_J2 |
| EM20-141    | 421    | 421.8  | 0.8    | A840371                |               | 0.425                | A840368_J3   | A840368_J4 |
| EM20-141    | 421.8  | 422.8  | 1      | A840372                |               | 1.968                | A840371_J1   | A840371_J2 |
| EM20-141    | 561.33 | 562    | 0.67   | A840465                |               | 0.315                | A840371_J3   | A840372_J1 |
|             |        |        |        |                        |               |                      |              | A840372_J2 |
|             |        |        |        |                        |               |                      |              | A840372_J3 |

| Hole number | From   | To     | Length | Original Sample Number | Gold (g/t Au) | by Fire Assay (best) | Photon Assay | Sample     |
|-------------|--------|--------|--------|------------------------|---------------|----------------------|--------------|------------|
| EM20-141    | 562.34 | 562.7  | 0.36   | A840467                |               | 0.569                | A840465_J2   | A840467_J1 |
| EM20-141    | 562.7  | 563    | 0.3    | A840468                |               | 0.236                | A840468_J1   |            |
| EM20-141    | 564.7  | 565.42 | 0.72   | A840471                |               | 0.168                | A840471_J1   | A840471_J2 |
|             |        |        |        |                        |               |                      | A840471_J3   |            |
| EM20-141    | 565.42 | 565.79 | 0.37   | A840472                |               | 85.029               | A840472_J1   |            |
| EM20-141    | 566.7  | 568    | 1.3    | A840474                |               | 0.488                | A840474_J1   | A840474_J2 |
|             |        |        |        |                        |               |                      | A840474_J3   | A840474_J4 |
|             |        |        |        |                        |               |                      | A840474_J5   |            |
| EM20-141    | 568    | 568.5  | 0.5    | A840475                |               | 0.175                | A840475_J1   | A840475_J2 |
| EM20-142    | 139.64 | 140.14 | 0.5    | A840612                |               | 7.556                | A840612_J1   | A840612_J2 |
| EM20-142    | 140.14 | 141    | 0.86   | A840613                |               | 6.924                | A840613_J1   | A840613_J2 |
|             |        |        |        |                        |               |                      | A840613_J3   | A840613_J4 |
| EM20-142    | 141    | 141.8  | 0.8    | A840614                |               | 1.124                | A840614_J1   | A840614_J2 |
|             |        |        |        |                        |               |                      | A840614_J3   | A840614_J4 |
| EM20-142    | 141.8  | 143    | 1.2    | A840615                |               | 1.25                 | A840615_J1   | A840615_J2 |
|             |        |        |        |                        |               |                      | A840615_J3   | A840615_J4 |
|             |        |        |        |                        |               |                      | A840615_J5   | A840615_J6 |
| EM20-142    | 143    | 144    | 1      | A840616                |               | 4.375                | A840616_J1   | A840616_J2 |
|             |        |        |        |                        |               |                      | A840616_J3   | A840616_J4 |
| EM20-142    | 144    | 145    | 1      | A840617                |               | 0.38                 | A840617_J1   | A840617_J2 |
|             |        |        |        |                        |               |                      | A840617_J3   | A840617_J4 |
|             |        |        |        |                        |               |                      | A840617_J5   |            |
| EM20-142    | 215.4  | 216    | 0.6    | A840645                |               | 0.144                | A840645_J1   | A840645_J2 |
| EM20-142    | 219.62 | 220    | 0.38   | A840650                |               | 0.058                | A840650_J1   | A840650_J2 |
| EM20-142    | 225.5  | 226.4  | 0.9    | A840658                |               | 0.09                 | A840658_J1   | A840658_J2 |
|             |        |        |        |                        |               |                      | A840658_J3   | A840658_J4 |
| EM20-142    | 227.7  | 229.1  | 1.4    | A840662                |               | 0.051                | A840662_J1   | A840662_J2 |
|             |        |        |        |                        |               |                      | A840662_J3   | A840662_J4 |
|             |        |        |        |                        |               |                      | A840662_J5   | A840662_J6 |
|             |        |        |        |                        |               |                      | A840662_J7   |            |
| EM20-142    | 238.4  | 240    | 1.6    | A840672                |               | 0.033                | A840672_J1   | A840672_J2 |

| Hole number | From   | To     | Length | Original Sample Number | Gold (g/t Au) by Fire Assay (best) | Photon Assay Sample |
|-------------|--------|--------|--------|------------------------|------------------------------------|---------------------|
|             |        |        |        |                        | A840672_J3                         |                     |
|             |        |        |        |                        | A840672_J4                         |                     |
|             |        |        |        |                        | A840672_J5                         |                     |
|             |        |        |        |                        | A840672_J6                         |                     |
|             |        |        |        |                        | A840672_J7                         |                     |
| EM20-142    | 272.8  | 273.1  | 0.3    | A840687                | 0.477                              | A840687_J1          |
| EM20-142    | 284.93 | 285.38 | 0.45   | A840701                | 0.624                              | A840701_J1          |

To view the source version of this press release, please visit <https://www.newsfilecorp.com/release/101815>

---

Dieser Artikel stammt von [Rohstoff-Welt.de](https://Rohstoff-Welt.de)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/398480--Benz-Mining~-PhotonAssay-Delivers-Increase-in-Reported-Gold-and-Confirms-Coarse-Gold.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer](#)!

---

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!  
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinen](#).