

Newcrest Mining Limited - Exploration Update - September 2021

09.09.2021 | [Newsfile](#)

Highlights

- At Red Chris, drilling continues to expand the higher grade mineralisation intersected at East Ridge, with this new discovery adjacent to the East Zone continuing to return high grade intercepts, supporting the potential for resource growth.
 - RC705 returned 254m @ 1.0g/t Au & 1.1% Cu from 718m, including 80m @ 1.6g/t Au & 1.4% Cu from 852m. This hole is located 100m above RC678 (previously reported) and demonstrates continuity over 300m vertically.
 - As noted in Newcrest's June 2021 Quarterly Exploration Report, East Ridge is located outside of Newcrest's Red Chris initial Mineral Resource estimate. Mineralisation remains open to the east and at depth, with ongoing drilling to define the extent.
- At Havieron, growth drilling continues to outline high grade mineralisation outside of the initial Inferred Mineral Resource estimate.
 - HAD133W1 located in the South East Crescent, has returned 133m @ 7.0g/t Au & 0.05% Cu from 1,446m, including 55.9m @ 9.7g/t Au & 0.04% Cu from 1,449.5m, ~250m below the initial Inferred Mineral Resource estimate.
 - Higher grade zones in the Northern Breccia to the north west of the initial Inferred Mineral Resource estimate were confirmed, with HAD140 returning 29.1m @ 9.7g/t Au & 0.29% Cu from 813.2m and HAD141 returning 87m @ 1.8g/t Au & 0.05% Cu from 1,328m including 17.8m @ 5.7g/t Au & 0.14% Cu from 1,378.5m.

Melbourne, September 8, 2021 - [Newcrest Mining Ltd.](#) (ASX: NCM) (TSX: NCM) Newcrest Managing Director and Chief Executive Officer, Sandeep Biswas, said, "We are excited by our continued exploration success at Red Chris and Havieron, with our extensive growth drilling programs delivering a number of new high grade intercepts in the period. At Red Chris, results from our new East Ridge discovery demonstrate the continuity of mineralisation along strike and at Havieron we intersected several new high grade intercepts outside of the initial Inferred Mineral Resource estimate, including HAD133W1 which returned 133m @ 7.0g/t Au. These results continue to support the potential for resource growth outside of the existing resource shells."

Red Chris - Significant results since the June 2021 Quarterly Exploration Report⁽¹⁾:

- RC705
 - 254m @ 1.0g/t Au & 1.1% Cu from 718m
 - including 182m @ 1.3g/t Au & 1.3% Cu from 764m
 - including 80m @ 1.6g/t Au & 1.4% Cu from 852m
- RC709
 - 166m @ 0.4g/t Au & 0.49% Cu from 788m
 - including 54m @ 0.89g/t Au & 0.96% Cu from 894m
 - including 30m @ 1.1g/t Au & 1.1% Cu from 902m
- RC718
 - 298m @ 0.33g/t Au & 0.45% Cu from 820m
 - including 52m @ 0.67g/t Au & 0.75% Cu from 1,062m

Havieron - Significant growth drilling results since the June 2021 Quarterly Exploration Report⁽²⁾:

- HAD133W1
 - 133m @ 7.0g/t Au & 0.05% Cu from 1,446m
 - including 55.9m @ 9.7g/t Au & 0.04% Cu from 1,449.5m

- HAD057W7
 - 23m @ 5.7g/t Au & 0.70% Cu from 613m
 - including 15m @ 8.6g/t Au & 0.96% Cu from 613m
 - 70m @ 2.2g/t Au & 0.03% Cu from 906m
 - including 12.8m @ 5.3 g/t Au & 0.02% Cu from 962.7m
- HAD140
 - 29.1m @ 9.7g/t Au & 0.29% Cu from 813.2m
- HAD141
 - 87m @ 1.8g/t Au & 0.05% Cu from 1,328m
 - including 17.8m @ 5.7g/t Au & 0.14% Cu from 1,378.5m

Red Chris, British Columbia, Canada⁽²⁾

Red Chris is a joint venture operated by Newcrest and in which Newcrest has a 70% interest.

The Brownfields Exploration program is focused on the discovery of additional zones of higher grade mineralisation within the Red Chris porphyry corridor, including targets outside of Newcrest's initial Mineral Resource estimate. During the period, there were up to eight diamond drill rigs in operation. A further 14,490m of drilling has been completed from 18 drill holes, with all drill holes intersecting mineralisation (except eleven which were dedicated geotechnical holes). This contributed to a total of 181,176m of drilling from 155 drill holes since Newcrest acquired its interest in the joint venture in August 2019.

At East Ridge, located adjacent to the East Zone, drilling is ongoing with 14 holes completed and six in progress. The follow up drilling is being completed on a nominal 100m x 100m grid to determine the footprint of the mineralisation and demonstrate the continuity of the higher grade mineralisation.

Results for the reporting period include:

- RC705 (drilled 100m above of RC678 previously reported) returned 254m @ 1.0g/t Au & 1.1% Cu from 718m, including 80m @ 1.6g/t Au & 1.4% Cu from 852m.
- RC708 (drilled 100m above of RC700 previously reported) returned 232m @ 0.16g/t Au & 0.26% Cu from 754m.
- RC709 (drilled 100m west of RC678) returned 166m @ 0.4g/t Au & 0.49% Cu from 788m, including 30m @ 1.1g/t Au & 1.1% Cu from 902m.
- RC713 (drilled 100m above RC705) returned 190m @ 0.26g/t Au & 0.41% Cu from 574m, including 28m @ 0.57g/t Au & 0.74% Cu from 712m, and
- RC718 (drilled 100m east of RC700 previously reported) returned 298m @ 0.33g/t Au & 0.45% Cu from 820m, including 52m @ 0.67g/t Au & 0.75% Cu from 1,062m.

Drilling to date has demonstrated continuity of the East Ridge zone (>1g/t AuEq) over dimensions of 400m high, 400m long and 125m wide, with the higher grade (>2g/t AuEq) over 300m high, 300m long and 100m wide.

East Ridge is located 300m east of East Zone and is outside of Newcrest's initial Mineral Resource estimate, supporting the potential for resource growth over time. Mineralisation is open to the east and at depth and extends the eastern side of the porphyry corridor as shown in Figures 1 and 2. Follow-up drilling is in progress to further define the extent and continuity of this high grade mineralisation.

A step out hole, RC701 drilled 700m east of East Ridge has extended the porphyry corridor beyond the limit of the East Ridge drilling. This hole returned 206m @ 0.2g/t Au & 0.49% Cu from 1,816m. The intercept is one of the deepest on the property. Drilling is planned for the zone between East Ridge and RC701 to search for additional high grade zones.

Approximately 50,000m of growth-related drilling is planned this calendar year from eight drill rigs.

Refer to Appendix 1 for additional information, and the Drillhole data table for all results reported during the period.

Figure 1. Schematic plan view map of the Red Chris porphyry corridor spanning East Ridge, East Zone, Main Zone and Gully Zone showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases). 0.5g/t Au, 1g/t Au, 1 g/t AuEq and 2g/t AuEq shell projections generated from a Leapfrog model. Gold equivalent (AuEq) grade calculated using a copper conversion factor of 1.67 ([gold grade (g/t)] + [copper grade (%)) x 1.67]), using US\$1,400/oz Au, US\$3.40/lb Cu and 100% recovery. It is the Company's opinion that all elements included in this metal equivalents calculation have a reasonable potential to be recovered and sold.

To view an enhanced version of Figure 1, please visit:
https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_003full.jpg

Figure 2. Long section view of the Red Chris porphyry corridor showing drill hole locations and gold distribution.

To view an enhanced version of Figure 2, please visit:
https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_004full.jpg

Figure 3. Oblique schematic section view of the Red Chris porphyry corridor showing gold distribution. 0.5 g/t Au, 1 g/t Au, 1g/t AuEq and 2g/t AuEq shell projections generated from the LeapfrogTM model. Gold equivalent (AuEq) grade calculated using a copper conversion factor ([gold grade (g/t)] + [copper grade (%)) x 1.67]) using US\$1,400/oz Au, US\$3.40/lb Cu, and 100% recovery. It is the Company's opinion that all elements included in this metal equivalents calculation have a reasonable potential to be recovered and sold.

To view an enhanced version of Figure 3, please visit:
https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_005full.jpg

Havieron Project, Western Australia⁽³⁾

The Havieron Project is operated by Newcrest under a Joint Venture Agreement with Greatland Gold. As announced on 30 November 2020, Newcrest has now met the Stage 3 expenditure requirement (US\$45 million) and is entitled to earn an additional 20% joint venture interest, resulting in an overall joint venture interest of 60% (Greatland Gold 40%). Newcrest can earn up to a 70% joint venture interest through total expenditure of US\$65 million and the completion of a series of exploration and development milestones (including the delivery of a Pre-Feasibility Study) in a four-stage farm-in over a six year period that commenced in May 2019. Newcrest may acquire an additional 5% interest at the end of the farm-in period at fair market value. The Joint Venture Agreement includes tolling principles reflecting the intention of the parties that, subject to a successful exploration program, Feasibility Study and a positive decision to mine, the resulting joint venture mineralised material will be processed at Telfer.

The Havieron Project is centred on a deep magnetic anomaly located 45km east of Telfer in the Paterson Province. The deposit is overlain by more than 420m of post mineral Permian cover. A further 10,375m of drilling has been completed from 18 drill holes, all awaiting assays. Results from 12 holes completed in the June 2021 quarter have been received, with eight holes returning significant assay intercepts in excess of 50 gram metres Au (Au ppm x length m). A total of 194,456m of drilling from 230 drill holes has been completed since Newcrest commenced exploration activity (excluding holes in progress, abandoned holes, or drill holes which have not been sampled).

Drilling in the reporting period was focused on potential resource growth at the South East Crescent, Northern Breccia and Eastern Breccia, and infill drilling the South East Crescent Zone to support the potential conversion of the Inferred Resource to Indicated. Drilling completed included:

- South East Crescent Zone Growth - assay results reported for two drill holes, one new drill hole completed, awaiting assays.
- South East Crescent Zone Infill - 10 new drill holes completed, awaiting assays.
- Northern Breccia - assay results reported for eight drill holes, four new drill holes completed, awaiting assays.
- Eastern Breccia - assay results reported for two drill holes, three new drill holes completed, awaiting assays.

At the South East Crescent, drilling targeting higher grade mineralisation at depth was conducted during the reporting period. Drilling is being conducted on 75m x 75m spacing and has been extended to 250m below the initial Inferred Mineral Resource extents. Results from two drill holes have been received, with significant results returned from HAD133W1.

Results include:

- HAD133W1
 - 133m @ 7.0g/t Au & 0.05% Cu from 1,446m
 - including 55.9m @ 9.7g/t Au & 0.04% Cu from 1,449.5m
 - including 20m @ 11g/t Au & 0.04% Cu from 1,519m

HAD133W1 has extended the high-grade mineralisation ~250m below the base of the Inferred Mineral Resource estimate. This intercept is ~150m below previously reported hole HAD133^{^^} (85m @ 11g/t Au & 0.29% Cu from 1,345m including 13m @ 32g/t Au & 0.46% Cu from 1,363m and including 14.5m @ 32g/t Au & 0.33% Cu from 1,396.5m). Assay results from one further hole HAD086W2 is pending. Drilling to assess the extent of the mineralisation below the South East Crescent Inferred Resource is ongoing.

HAD057W7 drilled to test lower target positions in the Northern Breccia also traversed the South East Crescent Zone within the initial Inferred Mineral Resource footprint. Results from this hole demonstrates good alignment with modelled grade and thickness within the South East Crescent zone, and supports the geological model including continuity of high grade.

Results include:

- HAD057W7
 - 23m @ 5.7g/t Au & 0.70% Cu from 613m
 - including 15m @ 8.6g/t Au & 0.96% Cu from 613m
 - 70m @ 2.2g/t Au & 0.03% Cu from 906m
 - Including 12.8m @ 5.3g/t Au & 0.02% Cu from 962.7m

A further 10 infill holes within the South East Crescent zone were completed, all awaiting assays. This drilling is designed to infill the South East Crescent Inferred Resource volume to 50m x 50m spacing to support the potential upgrade of a significant portion of the Inferred Resource to Indicated.

At the Northern Breccia, results from eight drill holes were returned and a further four new drillholes were completed (currently awaiting assays). The focus of the drilling in this zone is to expand the mineralisation and support potential resource growth. The latest drilling (75m x 75m) has extended the mineralised breccia footprint around the Inferred Mineral Resource extents with reported drill holes supporting extensions to breccia mineralisation. Drilling has confirmed and increased the continuity of mineralisation as a north-west mineralised corridor which has been identified up to 300m in length, and 100m wide, between 4300 - 4100mRL and remains open at depth. Higher grade mineralisation has been identified internal to the mineralised breccia corridor. The results include:

Results include:

- HAD089W3
 - 106.8m @ 0.96g/t Au & 0.12% Cu from 911.2m
 - including 15m @ 2.8g/t Au & 0.21% Cu from 978m

- HAD099W2
 - 126.7m @ 0.66g/t Au & 0.07% Cu from 643.3m
 - including 12.1m @ 1.3g/t Au & 0.12% Cu from 647.1m
- HAD138W1
 - 157.4m @ 0.93g/t Au & 0.21% Cu from 937.6m
 - including 16.1m @ 5.9g/t Au & 0.12% Cu from 1,043m
- HAD140
 - 29.1m @ 9.7g/t Au & 0.29% Cu from 813.2m
- HAD141
 - 87m @ 1.8g/t Au & 0.05% Cu from 1,328m
 - including 17.8m @ 5.7g/t Au & 0.14% Cu from 1,378.5m

At the Eastern Breccia two holes have returned assays (HAD084W1 and HAD141) with results from three drill holes pending. Drilling has targeted along strike from prior reported drill holes HAD083 and HAD084, over a strike length of approximately 600m. HAD141 has returned a mineralised intercept ~200m to the north west of HAD084. Drill testing and interpretation of the geological and mineralisation controls of the Eastern Breccia Zone is ongoing.

Results include:

- HAD141
 - 23m @ 1.7g/t Au & 0.01% Cu from 1,875m

Eight drill rigs are currently operational, including testing extensions of the South East Crescent Zone below 4,200mRL, extension and definition of the Northern Breccia and associated internal higher-grade zones to support potential expansion of the existing Inferred Mineral Resource. Additionally, infill drilling is being completed within the Inferred Mineral Resource limits to support ongoing mining studies.

Refer to Appendix 2 for additional information and Drillhole data table for all results reported during the period.

Figure 4. 3D Plan view schematic showing the spatial association of the South East Crescent, Northern Breccia and Eastern Breccia targets.

To view an enhanced version of Figure 4, please visit:
https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_006full.jpg

Figure 5. 3D section view schematic across section line A on Figure 3, highlighting selected South East Crescent growth intercepts below the current Inferred Resource.

To view an enhanced version of Figure 5, please visit:
https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_007full.jpg

Figure 6. Plan view schematic of a horizontal slice at 4300mRL through the Crescent Sulphide Zone and Breccia-hosted Zones, showing the extents of the 0.5 and 1.0 g/t Au Leapfrog™ grade shells with highlighted newly reported intercepts for this period. Also shown is the Eastern Breccia mineralisation outline projected to the 4300mRL section-drilling is ongoing to confirm the extent of these zones. This diagram highlights >50gram metres intersections drilled during the quarter, refer to inset diagram for relationship to all Havieron drilling.

To view an enhanced version of Figure 6, please visit:
https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_008full.jpg

Wilki Project, Western Australia

The Wilki Project covers a strategic landholding of ~2,200km² surrounding the Telfer operation and is adjacent to the Havieron Project. Newcrest entered into this exploration farm-in and joint venture agreement with Antipa Minerals Limited on 11 March 2020.

During the period, scout reverse circulation drill testing was completed at Tyama, WEM04, Protos9, Pajero and Triangle North targets. Assay results are pending.

This completes the initial Stage 1 drill program with a total of 5,137m of drilling completed. Additional work programs are being planned for the remaining field season.

Juri Joint Venture, Western Australia

On 30 November 2020, Newcrest announced its entry into the Juri Joint Venture. Juri is a farm-in and joint venture agreement with Greatland Gold with respect to its Black Hills and Paterson Range East projects, located within the Paterson Province approximately 50km from the Telfer operation. The joint venture covers an area of approximately 248km².

Under the terms of the agreement, Newcrest has been granted an initial 25% joint venture interest with the potential to earn up to a 75% joint venture interest through total expenditure of A\$20 million over a two stage earn-in, across a five year period. Greatland Gold will manage the Juri Joint Venture until the end of calendar year 2021, after which Newcrest has the right to be appointed as Manager.

Newcrest is currently assessing the assay results for the initial scout drill holes at Goliath, Outamind and Los Diablos targets in Paterson Range East. Initial drilling has also been completed at the Parlay and Saddle targets within the Black Hills Project. A total of 3,856m of drilling has now been completed this field season on the Juri JV.

Tennant East, Northern Territory

Work programs continue at the Tennant East project (located 300km east of Tennant Creek) with gravity surveys over the initial two target areas now completed. Follow up IP (induced polarisation) surveys will commence in September 2021 followed by scout drill testing in October 2021.

Nevada, USA

Drill activities have commenced at the Jarbridge project in north-eastern Nevada.

GJ Project, British Columbia, Canada

At the GJ Project, which is part of the Red Chris joint venture that is Newcrest operated and 70% owned, Newcrest is planning to test the depth potential of the Donnelly Zone which is part of a 10km porphyry corridor (Groat Stock). An initial program of two holes for 2,500m originally planned to commence in the September 2021 quarter has been rescheduled to the June 2022 quarter.

Appendix 1

Red Chris (70% Newcrest): JORC Table 1 Section 1: Sampling Techniques and Data

Criteria

Commentary

Sampling techniques

Core samples are obtained from core drilling. HQ and NQ diameter 6m run. Core was cut using an automatic core-cutter and half core sequences were not sampled.

Core drilling was advanced with HQ3, HQ, NQ3 and NQ diameter

Drilling techniques

Core from inclined drill holes are oriented on 3, 4.5m or 6m runs (Reflex ACTIII). At the end of each run, the bottom of hole position transferred to the whole drill core run length with a bottom of hole rod. Core recovery is systematically recorded from the commencement of each run against driller's depth blocks in each core tray with data recorded in the core log. This provided the depth, interval of core recovered, and interval of core

Drill sample recovery

Core recoveries were typically 100%, with isolated zones of lower recovery. Geological logging recorded qualitative descriptions of lithology, alteration, structure (for all core drilled - 14,490m in 18 holes- all holes intersected) and dedicated geotechnical holes, including orientation of key geological

Logging

Geotechnical measurements were recorded including Rock Quality Index, solid core recovery and qualitative rock strength measurements.

Magnetic susceptibility measurements were recorded every metre.

All geological and geotechnical logging was conducted at the Red Chris Mine.

Digital data logging was captured, validated and stored in an acQuire database.

All drill cores were photographed, prior to cutting and/or sampling them. Sampling, sample preparation and quality control protocols are consistent across all cores sampled.

Core was cut and sampled at the Red Chris Mine core processing facility in plastic bags together with pre-numbered sample tags and group labels. Sample weights typically varied from 5 to 10kg. Samples were cut to a standard style of mineralisation. Drill core samples were freighted by road to the laboratory.

Sub-sampling techniques and sample preparation

Sample preparation was conducted at the independent ISO 9001 certified Veritas Commodities Canada Ltd Laboratory, Vancouver (Bureau Veritas).

Core samples were crushed to 95% passing 4.75 mm, and the split to obtain up to 1kg sub-samples. This was done to produce a pulped product with the minimum standard of 95% passing 4.75 mm.

Duplicate samples were collected from crush and pulp samples at an acceptable level of variability for the material sampled and style of sample preparation.

Periodic size checks (1:20) for crush and pulp samples and sample preparation were conducted and recorded in the acQuire database.

Criteria	<p>Commentary</p> <p>Assaying of drill core samples was conducted at Bureau Veritas. A 4-acid digestion followed by ICP-AES/ICP-MS determination (method FA350) was determined by 50g fire assay with ICP-ES finish (method FA350). Gold was determined by Leco (method TC000) and mercury using aqua regia digestion followed by atomic absorption (method AQ200).</p> <p>Sampling and assaying quality control procedures consisted of inclusions (CRMs), coarse residue and pulp duplicates with each batch (at least one of each).</p> <p>Assays of quality control samples were compared with reference samples and verified as acceptable prior to use of data from analysed batches.</p> <p>Laboratory quality control data, including laboratory standards, blank and duplicate samples results are captured in acQuire database and assessed for accuracy and precision.</p> <p>Due to the limited extent of the drilling program to date, extended core cutting was not undertaken, whereby pulped samples will be submitted to an umpire laboratory for analysis and extensive re-submission programs.</p> <p>Analysis of the available quality control sample assay results indicates that the assay data is accurate and precision has been achieved and the database contains no anomalies that have been manipulated.</p> <p>The assaying techniques and quality control protocols used are considered to be appropriate and suitable for reporting exploration drilling results.</p> <p>Sampling intervals defined by the geologist are electronically assigned to the core cutting. Corresponding sample numbers matching pre-labelled sample tubes are assigned to each core interval.</p> <p>All sampling and assay information were stored in a secure acQuire database.</p> <p>Electronically generated sample submission forms providing the sample number, sample type and assay results are submitted with each submission to the laboratory. Assay results from the laboratory are loaded directly into the acQuire database.</p> <p>Assessment of reported significant assay intervals was verified by assessment of high resolution core photography. The verification of significant assay intervals was completed by company personnel and the Competent Person/Quality Control Manager.</p> <p>No adjustments are made to assay data, and no twinned holes have been used to correct mineralisation at various angles.</p> <p>There are no currently known drilling, sampling, recovery, or other factors that would affect the accuracy or reliability of the data.</p> <p>Drill collar locations were surveyed using a RTK GPS with GNSS receiver.</p> <p>Drill rig alignment was attained using an electronic azimuth aligner. Downhole survey was collected at 9 to 30m intervals of the drill hole (Reflex EZ-SHOT). At the end of hole, all holes have been surveyed using a gyroscopic survey system (Reflex EZ-GYRO).</p> <p>Topographic control is established from PhotoSat topographic data. The terrain topography is generally low relief to flat, with an average elevation of 1,500m above sea level. The terrain is characterized by gullies.</p> <p>All collar coordinates are provided in the North American Datum (NAD83). The drill hole spacing ranges from 100 - 200m in lateral extent with an area of 1.5km² at the East Zone, 1.5km² at the Main Zone and 1.5km² at the West Zone.</p> <p>No sample compositing is applied to samples.</p>
Quality of assay data and laboratory tests	
Verification of sampling and assaying	
Location of data points	
Data spacing and distribution	

Criteria	Commentary
Orientation of data in relation to geological structure	<p>Drilling of reported drill holes RC701, RC705, RC708, RC709, RC710 to the intrusive complex. The intrusive complex has an east-northeast to the north-northwest orientation.</p> <p>Drill holes exploring the extents of the East Ridge, East Zone, Main Zone and West Zone. Drill holes intersected moderately dipping volcanic and sedimentary units cut steeply dipping mineralised zones with an east-northeast orientation. Newcrest drill holes.</p> <p>The security of samples is controlled by tracking samples from drill rig to the Red Chris Mine core processing facility.</p>
Sample security	<p>Drill core was delivered from the drill rig to the Red Chris Mine core processing facility for geotechnical logging, high resolution core photography and cutting. Samples were freighted in sealed bags with security tags by road to the Red Chris core processing facility.</p> <p>Samples were freighted in sealed bags with security tags by road to the Red Chris core processing facility.</p> <p>Sample numbers are generated from pre-labelled sample tags. All samples are placed in numbered plastic bags. Sample tags are inserted into prenumbered plastic bags.</p> <p>Verification of sample numbers and identification is conducted by the laboratory using sample receipt advice issued to Newcrest.</p>
Audits or reviews	<p>Details of all sample movement are recorded in a database table. Details of analytical suite requested are recorded with the dispatch of sample. Any discrepancies logged at the receipt of samples into the laboratory.</p> <p>Due to the limited duration of the program, no external audits or reviews were conducted.</p> <p>Internal verification and audit of Newcrest exploration procedures are conducted by the laboratory.</p>
Section 2: Reporting of Exploration Results	
Criteria	Commentary
Mineral tenement and land tenure status	<p>Red Chris comprises 77 mineral tenures including five mineral claims and five mineral leases. Red Chris is a wholly-owned subsidiary of Newcrest Mining Ltd. (70%) and Imperial Metals Corp. (30%). Imperial Metals Corp. is the operator of Red Chris.</p> <p>Newcrest Red Chris Mining Limited and the Tahltan Nation, the Canadian Government, the Tahltan Band and Iskut First Nation, and the First Nations of the Nass River signed the Nass River Co-Management Agreement (IBCA) covering Red Chris.</p>
Exploration done by other parties	<p>All obligations with respect to legislative requirements are met by the operator.</p> <p>Conwest Exploration Limited, Great Plains Development Corporation, and Texasgulf Canada Ltd. (formerly Ecstall Mining Limited) conducted exploration in the areas between the Red Chris Project and the town of Dease Lake.</p> <p>Imperial Metals Corp. acquired the project in 2007 and held it until 2012.</p> <p>The Red Chris Project is located in the Stikine terrane, approximately 100 km west of the town of Dease Lake.</p>
Geology	<p>Late Triassic sedimentary and volcanic rocks of the Stikine terrane. Jurassic 204-198 Ma diorite to quartz monzonite plutons.</p> <p>Gold and copper mineralisation at Red Chris consists of porphyry-style mineralisation. Mineralisation is hosted in the plutons. The main mineral assemblage contains well developed pyrite, quartz, and tourmaline as vein and breccia infill, and disseminations. The main mineral assemblage is potassium feldspar-magnetite wall rock alteration.</p>
Drill hole information	As provided.

Criteria	Commentary
Data aggregation methods	Significant assay intercepts are reported as (A) length or equal to 20m, with less than 10m of consecutive internal dilution exceeding 0.5g/t Au for greater than or equal to 10m, (C) length-weighted averages exceeding 1g/t Au for greater than or equal to 10m, with less than 10m of consecutive internal dilution; (D) length-weighted averages with less than 10m of consecutive internal dilution; and (E) greater than or equal to 10m, with less than 10m of consecutive internal dilution. All intercept calculations.
Relationship between mineralisation widths and intercept lengths	Significant assay intervals reported represent apparent widths to confirm the geological model and true width of significant intercepts.
Diagrams	As provided.
Balanced reporting	This is the fourteenth release of Exploration Results for the Red Chris Project. Previous releases of Exploration Results dates are 30 January 2020, 11 March 2020, 30 April 2020, 11 July 2020, 10 October 2020, 10 December 2020, 28 January 2021, 27 July 2021.
Other substantive exploration data	Earlier reporting of exploration programs conducted by Newcrest has been reported. Exploration drilling programs are ongoing and will be reported in subsequent Newcrest releases.
Further work	Nil.
Drillhole data ⁽¹⁾	Further drilling is planned to define the extents of the mineralization.

Red Chris Project, British Columbia, Canada

Reporting Criteria: Intercepts reported are downhole drill width (not true width) Au >0.1ppm (0.1g/t Au) and minimum 20m downhole width with maximum consecutive internal dilution of 10m. Also highlighted are high grade intervals of Au >0.5ppm (0.5g/t Au), Au >1ppm (1g/t Au), Au >5ppm (5g/t Au), Au >10ppm (10g/t Au) and minimum 10m downhole width with maximum consecutive internal dilution of 10m. Gold grades are reported to two significant figures. Samples are from core drilling which is HQ or NQ in diameter. Core is photographed and logged by the geology team before being cut. Half core HQ and NQ samples are prepared for assay and the remaining material is retained in the core farm for future reference. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Total depth (end of hole) is rounded to one decimal place for reporting purposes.

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth (GRID)	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cu (pct)	Cut off
RC701	DD	453530	6397490	1469	2137.4	145	-45	1140	1162	22	0.17	0.02	0.1
								1190	1242	52	0.29	0.04	0.1
							incl.	1194	1206	12	0.53	0.06	0.5
								1704	1754	50	0.23	0.53	0.1
								1816	2022	206	0.20	0.49	0.1
RC705	DD	453310	6396503	1425	1264.3	147	-59	316	350	34	0.14	0.01	0.1
								364	434	70	0.12	0.02	0.1
								718	972	254	1.0	1.1	0.1
							incl.	764	946	182	1.3	1.3	0.5
							incl.	782	840	58	1.5	1.6	1
							incl.	852	932	80	1.6	1.4	1
RC706	DD	454518	6397466	1343	1523	148	-45	Assays Pending					
RC708	DD	453483	6396405	1417	1208	145	-62	364	384	20	0.10	0.13	0.1
								612	640	28	0.12	0.23	0.1
								652	734	82	0.21	0.36	0.1
								754	986	232	0.16	0.26	0.1
RC709	DD	453184	6396558	1430	1383.2	149	-58	704	774	70	0.13	0.27	0.1
								788	954	166	0.40	0.49	0.1
							incl.	894	948	54	0.89	0.96	0.5
							incl.	902	932	30	1.1	1.1	1
								972	1064	92	0.16	0.26	0.1

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azimuth (GRID)	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cu (pct)	Cut off
								1358	1382	24	0.24	0.1	0.1
RC713	DD	453381	6396452	1425	1103.6	153	-56	408	438	30	0.20	0.23	0.1
								574	764	190	0.26	0.41	0.1
							incl.	712	740	28	0.57	0.74	0.5
RC718	DD	453485	6396610	1403	1432	145	-58	820	1118	298	0.33	0.45	0.1
							incl.	1012	1024	12	0.97	0.44	0.5
							incl.	1062	1114	52	0.67	0.75	0.5
								1166	1210	44	0.28	0.46	0.1
RC719	DD	453207	6396504	1431	1716.8	148	-56				Assays Pending		
RC726	DD	454725	6397172	1244	600	291	-9				Geotechnical Hole - Not Sampled		
RC727#	DD	453316	6396752	1448	1565.7	147	-58				Assays Pending		
RC728	DD	452434	6396600	1460	1284.2	150	-49				Development Hole		
RC728W	DD	452434	6396600	1460	1181	150	-49				Development Hole		
RC729	DD	452504	6396348	1495	1300.8	150	-54				Development Hole		
RC730	DD	452646	6396369	1488	990.2	148	-57				Development Hole		
RC731	DD	454216	6398337	1483	60	310	-50				Geotechnical Hole - Not Sampled		
RC732	DD	453931	6397964	1472	90	360	-45				Geotechnical Hole - Not Sampled		
RC733	DD	453919	6397851	1476	120	310	-50				Geotechnical Hole - Not Sampled		
RC734	DD	453890	6397715	1476	150	310	-45				Geotechnical Hole - Not Sampled		
RC735#	DD	453568	6396656	1392	1501.8	147	-58				Assays Pending		
RC736	DD	454519	6397469	1341	602.2	134	-63				Geotechnical Hole - Not Sampled		
RC737#	DD	454297	6397638	1426	1395.1	169	-50				Geotechnical Hole - Not Sampled		
RC738	DD	451579	6395919	1540	302.5	360	-90				Geotechnical Hole - Not Sampled		
RC739#	DD	453383	6396811	1451	1258.7	146	-57				Assays Pending		
RC740#	DD	453407	6397178	1465	900	146	-45				Assays Pending		
RC741	DD	451671	6395160	1540	302.6	360	-90				Geotechnical Hole - Not Sampled		
RC742#	DD	453422	6396359	1426	637	151	-56				Assays Pending		
RC743	DD	452332	6395641	1437	452.7	242	-90				Geotechnical Hole - Not Sampled		
RC744#	DD	452126	6396252	1520	353.3	162	-66				Geotechnical Hole - Not Sampled		
RC745#	DD	453624	6396544	1403	170.3	145	-60				Assays Pending		

#drilling in progress. **partial intercept, assays pending. ^updated intercept ^^previously reported intercept

Figure 7. Schematic plan view map of the East Ridge showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases). 0.5 g/t Au, 1 g/t Au, 1 g/t AuEq and 2 g/t AuEq shell projections generated from a Leapfrog model and sliced at 800mRL. Gold equivalent (AuEq) grade calculated using a copper conversion factor of 1.67 ([gold grade (g/t)] + [copper grade (%)] x 1.67), using US\$1,400/oz Au, US\$3.40/lb Cu and 100% recovery. It is the Company's opinion that all elements included in this metal equivalents calculation have a reasonable potential to be recovered and sold.

To view an enhanced version of Figure 7, please visit:

https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_009full.jpg

Figure 8. Schematic cross section of RC709 and RC719 (Section Line 33N) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t Au, 1 g/t Au and 2 g/t Au shell projections generated from Leapfrog model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 8, please visit:

https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_010full.jpg

Figure 9. Schematic cross section of RC705, RC713 and RC742 (Section Line 34N) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t Au, 1 g/t Au and 2 g/t Au shell projections generated from Leapfrog model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 9, please visit:

https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_011full.jpg

Figure 10. Schematic cross section of RC708 and RC727 (Section Line 35N) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t AuEq, 1 g/t AuEq and 2 g/t AuEq shell projections generated from Leapfrog model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections. It is the Company's opinion that all elements included in this metal equivalents calculation have a reasonable potential to be recovered and sold.

To view an enhanced version of Figure 10, please visit:

https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_012full.jpg

Figure 11. Schematic cross section of RC718 and RC739 (Section Line 36N) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t AuEq, 1 g/t AuEq and 2 g/t AuEq shell projections generated from Leapfrog model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections. It is the Company's opinion that all elements included in this metal equivalents calculation have a reasonable potential to be recovered and sold.

To view an enhanced version of Figure 11, please visit:

https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_013full.jpg

Figure 12. Schematic cross section of RC701 (Section Line 40/41N) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t Au, 1 g/t Au and 2 g/t Au shell projections generated from Leapfrog model. Due to window size (+/- 100m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 12, please visit:

https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_014full.jpg

Appendix 2

Havieron Project (Greatland Gold Plc - Joint Venture Agreement): JORC Table 1 Section 1: Sampling Techniques and Data

Criteria

Commentary

Sampling techniques

Core samples are obtained from core drilling in Proterozoic basement. Core was drilled on a 6m run. Core was cut using an automated core saw into 1m intervals with breaks for major geological changes. Sampling intervals sequences were not sampled.

Criteria	<p>Commentary</p> <p>Permian Paterson Formation cover sequence was drilled using mud rotary drilling. The cover sequence was observed to approximately 420m vertically below surface. Steel casings were run in the cover sequence and a pre-collar was run in the top of the Paterson Formation.</p>
Drilling techniques	<p>Core drilling was advanced from the base of the cover sequence with a mud rotary configuration.</p>
Drill sample recovery	<p>Core from inclined drill holes are oriented on 3m and 6m runs using a magnetic compass (Reflex ACTIII). At the end of each run, the bottom of hole position is transferred to the whole drill core run length with a bottom of hole marker. Core recovery is systematically recorded from the commencement of each run against driller's depth blocks in each core tray with data recorded in the acQuire database. This provides the depth, interval of core recovered, and interval of core recovered.</p>
Logging	<p>Core recoveries were typically 100%, with isolated zones of lower recovery rates.</p> <p>Cover sequence drilling by the mud-rotary drilling did not yield recoveries of 100%.</p> <p>Geological logging recorded qualitative descriptions of lithology, alteration, and structure (for all core drilled - 10,375m for 18 drill holes, all intersected the cover sequence) of key geological features.</p> <p>Geotechnical measurements were recorded including Rock Quality Index, solid core recovery and qualitative rock strength measurements.</p> <p>Magnetic susceptibility measurements were recorded every metre. The interval between measurements was determined at site on whole core samples.</p> <p>All geological and geotechnical logging was conducted at the Haverton Hill core processing facility.</p> <p>Digital data logging was captured on diamond drill core intervals on the acQuire database.</p> <p>All drill cores were photographed, prior to cutting and/or sampling to document the core quality.</p> <p>The logging is of sufficient quality to support Mineral Resource estimation. Sampling, sample preparation and quality control protocols are consistent with the Mineral Resource estimation.</p> <p>Core was cut and sampled at the Haverton Hill core processing facility. 2.0 m intervals were collected in pre-numbered calico bags and grouped in sample sets. Sample weights typically varied from 0.5 to 8kg. Sample sizes are determined by the degree of mineralisation. Drill core samples were freighted by air and road to the independent laboratory.</p> <p>Sample preparation was conducted at the independent ISO17025 accredited laboratory (Intertek). Samples were dried at 105°C, and crushed to 95% passing 2mm. A 3kg sub-sample, which was pulverised (using LM5) to produce a powder of 95% passing 106µm. Routine grind size analysis is conducted on the sample powder.</p> <p>Duplicate samples were collected from crush and pulp samples at an acceptable level of variability for the material sampled and style of sample.</p> <p>Periodic size checks (1:20) for crush and pulp samples and sample sets are conducted and recorded in the acQuire database.</p>
Sub-sampling techniques and sample preparation	

Criteria	Commentary
	Assaying of drill core samples was conducted at Intertek. All samples were acid digested followed by ICP-AES/ICP-MS determination (methane) to provide a total assay for copper. Gold analyses were determined by FA50N/AA, which is considered to provide a total assay for gold.
Quality of assay data and laboratory tests	Sampling and assaying quality control procedures consisted of including (CRMs), coarse residue and pulp duplicates with each batch (at least one of each).
	Assays of quality control samples were compared with reference standards and found acceptable prior to use of data from analysed batches.
Quality of assay data and laboratory tests	Laboratory quality control data, including laboratory standards, blank and duplicate results are captured in the acQuire database and assessed for accuracy.
	Extended quality control programs including pulp samples submitted with more extensive re-submission programs have been completed.
Quality of assay data and laboratory tests	Analysis of the available quality control sample assay results indicates that accuracy and precision has been achieved and the database contains no anomalies that suggest manipulation.
	The assaying techniques and quality control protocols used are considered appropriate and suitable for reporting exploration drilling results.
Verification of sampling and assaying	Sampling intervals defined by the geologist are electronically assigned to the core cutting. Corresponding sample numbers matching pre-labelled sample tubes are assigned to each core interval.
	All sampling and assay information were stored in a secure acQuire database.
Verification of sampling and assaying	Electronically generated sample submission forms providing the sample number, sample type, sample weight and assay results for each submission to the laboratory. Assay results from the laboratory are loaded directly into the acQuire database.
	Assessment of reported significant assay intervals was verified by the geologist and assessment of high resolution core photography. The verification was completed by company personnel and the Competent Person/Qualified Person.
Location of data points	No adjustments are made to assay data, and no twinned holes have been identified.
	There are no currently known drilling, sampling, recovery, or other issues that affect the accuracy or reliability of the data.
Location of data points	Drill collar locations were surveyed using a differential GPS with Global Positioning System (GPS) and all drill holes reported.
	Drill rig alignment was attained using an electronic azimuth aligner and surveying the rig alignment to the nearest 1m. Drill hole intervals in the cover sequence, and every 6 to 30m in diamond drilling, were surveyed using a single shot (Axis Mining Champ Gyro). The single shot surveys have been converted to surface (Axis Mining Champ) along with a selection of drill holes using a magnetic contactor using a DeviGyro tool - confirming sufficient accuracy for the survey.
Data spacing and distribution	A LIDAR survey was completed over the project area in Nov 2019 to create a topographic model for the project with a spatial accuracy of +/- 0.1m. The topography is generally low relief to flat, elevation within the dune area is approximately 100m above sea level. The survey was conducted using the Australian Height Datum (AHD) steepening to the southeast. All coordinates are in the Geocentric Datum of Australian (GDA20 Zone 51). All relative depths are in metres above sea level. Within the South-East Crescent and Breccia zone drill hole spacing is approximately 200m within the initial resource extents. Outside the initial resource boundary, drill hole spacing is approximately 200m in lateral extent within the breccia zone over an area of ~2km ² to establish the degree of geological and grade continuity.
	Significant assay intercepts remain open. Further drilling is required to delineate the defined mineralisation. No sample compositing is applied to samples.
Data spacing and distribution	Drilling intersects mineralisation at various angles.

Criteria	Commentary
Orientation of data in relation to geological structure	<p>Drill holes exploring the extents of the Havieron mineral system in siliciclastic sedimentary facies, mineralised breccia and sub-vertical has been interpreted from historic and Newcrest drill holes.</p> <p>Variable brecciation, alteration and sulphide mineralisation is observed 650m x 350m trending in a north west orientation and over 1000m.</p> <p>The subvertical southeast high grade arcuate crescent sulphide zone has been defined over a strike length of up to 550m, and extended cover.</p> <p>Drilling direction is oriented to intersect the steeply dipping high-grade intersection angle of greater than 40 degrees. The drilled length of less than true width of mineralisation.</p> <p>The security of samples is controlled by tracking samples from drill site to laboratory.</p> <p>Drill core was delivered from the drill rig to the Havieron core yard for sample cutting, geotechnical logging, core processing was completed by Newcrest.</p> <p>High resolution core photography and cutting of drill core was undertaken at the laboratory facilities.</p>
Sample security	<p>Samples were freighted in sealed bags by air and road to the Laboratory by project personnel and owner representatives. Sample numbers are generated directly from the sample tracking system onto pre-numbered calico bags.</p> <p>Verification of sample numbers and identification is conducted by the laboratory using the sample receipt advise issued to Newcrest.</p> <p>Details of all sample movement are recorded in a database table. Details of analytical suite requested are recorded with the dispatch of sample. Discrepancies logged at the receipt of samples into the analytical suite. Internal reviews of core handling, sample preparation and assays are conducted on a regular basis by both project personnel and owner representatives.</p>
Audits or reviews	<p>In the Competent Person's opinion, the sample preparation, security and handling of samples are consistent with current industry standards and are entirely appropriate for the mineralisation identified and will be appropriate for use in the reporting of Resource estimates. There are no identified drilling, sampling or reporting issues in respect of the adequacy and reliability of the results of the drilling programme in place.</p>

Section 2: Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	<p>The Havieron Project is entirely contained within mining tenement M45/1287. The Project is held by Greatland Pty Ltd and Newcrest Operations Limited. The Project is held under a Joint Venture Agreement (effective 30 November 2020) and Farm-In Agreement between Greatland Gold plc and Newcrest. Greatland Gold plc. Newcrest is the manager of the Havieron Project. Newcrest has a minimum expenditure requirement (US\$45 million) and is entitled to earn a 60% interest in the Project, resulting in an overall joint venture interest of 60%. Newcrest has the option to acquire a further 5% at fair market value.</p> <p>Newcrest and the Western Desert Lands Aboriginal Corporation have entered into an Indigenous Land Use Agreement (ILUA) which relates to the use of native title by the Pitjantjatjara and Yankunytjatjara Aboriginal communities. The parties have agreed that the ILUA will apply to any future joint venture interest held by the Participants (Newcrest and Greatland Gold) at Havieron.</p> <p>The mining tenement M45/1287 wholly replaces the 100% interest in the exploration tenement on which the Havieron Project is located. Newcrest has no obligations with respect to legislative requirements in place in respect of the former exploration tenement standing for prior exploration tenement E45/4701.</p>

Criteria

Exploration done by other parties

Commentary

Newcrest completed six core holes in the vicinity of the Havieron Project in 2018. The completed drill targeting and drilling of nine Reverse Circulation holes totalled approximately 6,800m in 2018. Results of drilling programs have not been reported on the Greatland Gold website.

Geology

Drill hole Information

Data aggregation methods

Relationship between mineralisation widths and intercept lengths of mineralisation and true widths are less than downhole widths. This is possible when all results are received, and final geological interpretation is provided.

Diagrams

Balanced reporting

Other substantive exploration data

Further work

Drillhole data⁽¹⁾

Havieron Project, Paterson Province, Western Australia

Reporting Criteria: Intercepts reported are downhole drill width (not true width) Au >0.20ppm (0.2g/t Au) and minimum 20m downhole width with maximum consecutive internal dilution of 10m. Average grades are based on length-weighting of samples grades. Also highlighted are high grade intervals of Au >1.0ppm (1g/t Au) and minimum 10m downhole width with maximum consecutive internal dilution of 5m, and intervals of >30g/t which are greater or equal to 30 gram metres (Au_ppm x length) are tabled. Gold grades are reported to two significant figures, the downhole lengths are rounded to 0.1m which may cause some apparent discrepancies in interval widths. Samples are from core drilling which is PQ, HQ or NQ in diameter. Core is photographed and logged by the geology team before being cut. Half core PQ, HQ and NQ samples are prepared for assay and the remaining material is retained in the core farm for future reference. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Total depth (end of hole) is rounded to one decimal place for reporting purposes. Collars denoted with a * show partial results, with further significant assays to be reported in subsequent exploration updates.

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azi	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cu (pct)	Cut off
HAD046W2	MR-DD	464273	7598202	257	1223	225	-62						Assays pending

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azi	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cu (pct)	Cut off	
HAD053W3	MR-DD	463845	7598075	256	1141.1	132	-61						Assays pending	
HAD053W4	MR-DD	463846	7598077	256	557.4	132	-61						Assays pending	
HAD057W7	MR-DD	464459	7598026	257	1064.8	225	-55	613	636	23	5.7	0.70	0.2 g/t Au	
						Incl.		613	628	15	8.6	0.96	1.0 g/t Au	
						Incl.		626	627	1	45	0.77	30 g/t Au	
								660	689.3	29.3	1.0	0.02	0.2 g/t Au	
								906	976	70	2.2	0.03	0.2 g/t Au	
						Incl.		930.5	953.6	23.1	2.0	0.04	1.0 g/t Au	
						Incl.		962.7	975.5	12.8	5.3	0.02	1.0 g/t Au	
								989.4	1063	73.6	0.57	0.08	0.2 g/t Au	
								993.4	1003.7	10.3	1.1	0.43	1.0 g/t Au	
HAD057W8	MR-DD	464458	7598024	257	1153.6	225	-55						No Significant Assays	
HAD061W1	MR-DD	464367	7598038	257	1010.1	206	-61						Assays pending	
HAD064W1	MR-DD	463591	7597377	263	799	54	-54						Assays pending	
HAD068W3	MR-DD	464547	7597081	261	1144.2	323	-55						Assays pending	
HAD069W3	MR-DD	464439	7598214	257	1500.9	222	-62						Assays pending	
HAD069W4	MR-DD	464439	7598214	257	1586	222	-62						Assays pending	
HAD081W3	MR-DD	463407	7597521	263	1760.1	43	-57						Assays pending	
HAD084W1	MR-DD	463270	7597841	256	1983.8	83	-65	1044	1074	30	1.1	0.13	0.2 g/t Au	
								1555	1589.8	34.8	0.34	0.12	0.2 g/t Au	
						Incl.		1572	1583.4	11.4	0.80	0.26	1.0 g/t Au	
								1627	1740.5	113.5	0.40	0.07	0.2 g/t Au	
								1751.3	1788	36.7	0.52	0.10	0.2 g/t Au	
								1854.9	1892.8	37.9	0.71	0.04	0.2 g/t Au	
HAD084W2	MR-DD	463270	7597841	256	1914.2	83	-65						Assays pending	
HAD086W2	MR-DD	464623	7598148	258	1629.6	225	-65						Assays pending	
HAD089W3	MR-DD	464299	7597746	258	1379.3	290	-61	532.5	564	31.5	0.22	0.03	0.2 g/t Au	
								574.3	611	36.7	0.17	0.01	0.2 g/t Au	
								780.8	803	22.2	0.54	0.18	0.2 g/t Au	
								818	856	38	0.21	0.12	0.2 g/t Au	
								872	899	27	0.48	0.02	0.2 g/t Au	
								911.2	1018	106.8	0.96	0.12	0.2 g/t Au	
						Incl.		978	993	15	2.8	0.21	1.0 g/t Au	
						Incl.		999	1012	13	1.0	0.34	1.0 g/t Au	
								1289	1320	31	0.68	0.03	0.2 g/t Au	
HAD090W1	MR-DD	463596	7597998	255	2041.2	105	-64						Assays pending	
HAD099W2	MR-DD	464090	7597787	257	1059.9	294	-65	643.3	770	126.7	0.66	0.07	0.2 g/t Au	
								647.1	659.2	12.1	1.3	0.12	1.0 g/t Au	
								726.9	727.1	0.4	109	0.27	30 g/t Au	
								819.8	867	47.2	0.51	0.12	0.2 g/t Au	
HAD117W2	MR-DD	464210	7597976	256	547.5	211	-61						Assays pending	
HAD117W3	MR-DD	464210	7597976	256	574.6	212	-61						Assays pending	
HAD117W4	MR-DD	464210	7597976	256	868.6	212	-61						Assays pending	
HAD117W5	MR-DD	464210	7597976	256	912.1	212	-61						Assays pending	
HAD117W6	MR-DD	464210	7597976	256	901	212	-61						Assays pending	
HAD133W1	MR-DD	464071	7598315	257	1673.6	171	-65	1362	1389	27	0.25	0.00	0.2 g/t Au	
								1446	1579	133	7.0	0.05	0.2 g/t Au	
								Incl.	1449.5	1505.4	55.9	9.7	0.04	1.0 g/t Au
								Incl.	1451	1453	2	52	0.06	30 g/t Au
								Incl.	1460	1461	1	37	0.08	30 g/t Au
								Incl.	1480	1482	2	72	0.08	30 g/t Au
								Incl.	1489	1490	1	58	0.03	30 g/t Au
								Incl.	1519	1539	20	11	0.04	1.0 g/t Au
								Incl.	1519	1520	1	38	0.02	30 g/t Au
								Incl.	1532	1536	4	36	0.11	30 g/t Au

Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Total Depth (m)	Azi	Dip	From (m)	To (m)	Interval (m)	Au (ppm)	Cu (pct)	Cut off
HAD133W2	MR-DD	464071	7598315	257	1545.2	171	-65	1269	1290	21	0.21	0.00	0.2 g/t Au
					1413.2			14466.8		53.6	0.38	0.41	0.2 g/t Au
HAD138	MR-DD	463450	7597872	253	1506.8	76	-56	683 ^{AA}	767.5	84.5	2.0	0.05	0.2 g/t Au
					Incl. 685.3 ^{AA}	698		12.7		6.0	0.01	1.0 g/t Au	
					Incl. 710.2 ^{AA}	721		10.8		6.8	0.07	1.0 g/t Au	
					Incl. 710.2 ^{AA}	711		0.8		73	0.28	30.0 g/t Au	
						847.9		903		55.1	0.82	0.05	0.2 g/t Au
						Incl. 864.8	865.6		0.8		44	0.42	30 g/t Au
						1285.6	1308.9		23.3		0.22	0.02	0.2 g/t Au
HAD138W1	MR-DD	463450	7597872	253	1609.7	76	-56	796	816.2	20.2	0.23	0.07	0.2 g/t Au
					937.6			1095		157.4	0.93	0.21	0.2 g/t Au
					Incl. 1043	1059.1		16.1		5.9	0.12	1.0 g/t Au	
					Incl. 1058	1058.7		0.7		101	0.60	30 g/t Au	
					1548.4	1575.6		27.2		0.80	0.05	0.2 g/t Au	
HAD139	MR-DD	463985	7597787	257	743.4	327	-58	516.2	563.9	47.7	0.23	0.03	0.2 g/t Au
HAD140	MR-DD	463488	7598056	255	1207	100	-59	813.2	842.3	29.1	9.7	0.29	0.2 g/t Au
					Incl. 823.9	826.1		2.2		69	0.04	30 g/t Au	
					Incl. 825	826.1		1.1		152	3.6	30 g/t Au	
					Incl. 835.6	837.8		2.2		46	0.63	30 g/t Au	
					898.3	919		30.7		0.23	0.18	0.2 g/t Au	
					965.6	991.4		25.8		0.27	0.29	0.2 g/t Au	
HAD141	MR-DD	463362	7597504	264	2036.2	29	-65	1328	1415	87	1.8	0.05	0.2 g/t Au
					Incl. 1378.5	1396.3		17.8		5.7	0.14	1.0 g/t Au	
					Incl. 1389	1390		1		50	0.43	30 g/t Au	
					1561	1609		48		1.4	0.02	0.2 g/t Au	
					1688	1735.3		47.3		0.20	0.04	0.2 g/t Au	
					1795	1836		41		0.21	0.03	0.2 g/t Au	
					1875	1898		23		1.7	0.01	0.2 g/t Au	
HAD141W1	MR-DD	463362	7597504	264	1985.9	27	-65						Assays pending
HAD147	MR-DD	464489	7598137	258	1341.7	227	-69						Assays pending
HAD147W1	MR-DD	464489	7598137	258	900.7	227	-69						Assays pending
HAD147W2	MR-DD	464489	7598137	258	1405.2	227	-69						Assays pending

#drilling in progress. **partial intercept, assays pending. ^updated intercept. ^^previously reported intercept.

Figure 13. Schematic plan view map showing drill hole locations and significant intercepts reported in this release superimposed on the interpreted geology. Previously reported holes are not shown for the sake of clarity. Note some holes and results appear on multiple sections due to the sections orientation and sections overlap.

To view an enhanced version of Figure 13, please visit:

https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_015full.jpg

Figure 14. Schematic cross section of geology and significant new drillhole intercepts (looking northwest, Section Line S1, +/-100m section width, as shown in Figure 13). Due to section window size and orientation holes may appear on multiple sections.

To view an enhanced version of Figure 14, please visit:

https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_016full.jpg

Figure 15. Schematic cross section of geology and significant new drillhole intercepts (looking northwest, Section Line S2, +/-100m section width, as shown in Figure 13). Due to section window size and orientation holes may appear on multiple sections.

To view an enhanced version of Figure 15, please visit:
https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_017full.jpg

Figure 16. Schematic cross section of geology and significant new drillhole intercepts (looking northwest, Section Line S3, +/-100m section width, as shown in Figure 13). Due to section window size and orientation holes may appear on multiple sections.

To view an enhanced version of Figure 16, please visit:
https://orders.newsfilecorp.com/files/7614/95947_12d01f0404d7bade_018full.jpg

Forward Looking Statements

This document includes forward looking statements and forward looking information within the meaning of securities laws of applicable jurisdictions. Forward looking statements can generally be identified by the use of words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "believe", "continue", "objectives", "targets", "outlook" and "guidance", or other similar words and may include, without limitation, statements regarding estimated reserves and resources, certain plans, strategies, aspirations and objectives of management, anticipated production, study or construction dates, expected costs, cash flow or production outputs and anticipated productive lives of projects and mines. Newcrest continues to distinguish between outlook and guidance. Guidance statements relate to the current financial year. Outlook statements relate to years subsequent to the current financial year.

These forward looking statements involve known and unknown risks, uncertainties and other factors that may cause Newcrest's actual results, performance and achievements or industry results to differ materially from any future results, performance or achievements, or industry results, expressed or implied by these forward-looking statements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which Newcrest operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation. For further information as to the risks which may impact on Newcrest's results and performance, please see the risk factors included in the Annual Information Form dated 13 October 2020 lodged with ASX and SEDAR.

Forward looking statements are based on Newcrest's good faith assumptions as to the financial, market, regulatory and other relevant environments that will exist and affect Newcrest's business and operations in the future. Newcrest does not give any assurance that the assumptions will prove to be correct. There may be other factors that could cause actual results or events not to be as anticipated, and many events are beyond the reasonable control of Newcrest. Readers are cautioned not to place undue reliance on forward looking statements, particularly in the current economic climate with the significant volatility, uncertainty and disruption caused by the COVID-19 pandemic. Forward looking statements in this document speak only at the date of issue. Except as required by applicable laws or regulations, Newcrest does not undertake any obligation to publicly update or revise any of the forward looking statements or to advise of any change in assumptions on which any such statement is based.

Ore Reserves and Mineral Resources Reporting Requirements

As an Australian Company with securities listed on the Australian Securities Exchange (ASX), Newcrest is subject to Australian disclosure requirements and standards, including the requirements of the Corporations Act 2001 and the ASX. Investors should note that it is a requirement of the ASX listing rules that the

reporting of ore reserves and mineral resources in Australia is in accordance with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code) and that Newcrest's ore reserve and mineral resource estimates comply with the JORC Code.

Newcrest is also subject to certain Canadian disclosure requirements and standards, as a result of its secondary listing on the Toronto Stock Exchange (TSX), including the requirements of National Instrument 43-101 (NI 43-101). Investors should note that it is a requirement of Canadian securities law that the reporting of Mineral Reserves and Mineral Resources in Canada and the disclosure of scientific and technical information concerning a mineral project on a property material to Newcrest comply with NI 43-101. Newcrest's material properties are currently Cadia, Lihir and Wafi-Golpu.

Competent Person's Statement

The information in this document that relates to Exploration Targets, Exploration Results, and related scientific and technical information, is based on and fairly represents information compiled by Mr F. MacCorquodale. Mr MacCorquodale is the General Manager - Greenfields Exploration and a full-time employee of [Newcrest Mining Ltd.](#) He is a shareholder in [Newcrest Mining Ltd.](#) and is entitled to participate in Newcrest's executive equity long term incentive plan, details of which are included in Newcrest's 2020 Remuneration Report. He is a Member of the Australian Institute of Geoscientists. Mr MacCorquodale has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code and as a Qualified Person under NI 43-101. Mr MacCorquodale approves the disclosure of scientific and technical information contained in this document and consents to the inclusion of material of the matters based on his information in the form and context in which it appears.

Authorised by the Newcrest Disclosure Committee

For further information please contact

Investor Enquiries

Tom Dixon
+61 3 9522 5570
+61 450 541 389
Tom.Dixon@newcrest.com.au

Ben Lovick
+61 3 9522 5334
+61 407 269 478
Ben.Lovick@newcrest.com.au

North American Investor Enquiries

Ryan Skaleskog
+1 866 396 0242
+61 403 435 222
Ryan.Skaleskog@newcrest.com.au

Media Enquiries

Tom Dixon
+61 3 9522 5570
+61 450 541 389
Tom.Dixon@newcrest.com.au

This information is available on our website at www.newcrest.com.

1 # drilling in progress ** partial intercept, assays pending ^ updated intercept or ^^ previously reported.

2 # drilling in progress ** partial intercept, assays pending ^ updated intercept or ^^ previously reported.

3 # drilling in progress ** partial intercept, assays pending ^ updated intercept or ^^ previously reported.

To view the source version of this press release, please visit <https://www.newsfilecorp.com/release/95947>

Dieser Artikel stammt von [Rohstoff-Welt.de](https://www.rohstoff-welt.de)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/393578--Newcrest-Mining-Limited---Exploration-Update---September-2021.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinen](#).