Benz Mining Announces New High Grade Gold Shoot Identified at North West Zone at Eastmain **Gold Project**

03.08.2021 | Newsfile

HIGHLIGHTS

- Maiden broad spaced scout drilling into North West (NW) Zone (600m from current resource) has highlighted the potential for a new high grade gold shoot
- Assays for the first 17 holes of 2021 received assay results include:
 - 3.0m at 16.6g/t gold including 1.5m at 32.8g/t gold (EM21-143)
 7.8m at 8.7g/t gold including 1.0m at 32.6g/t gold (EM21-146)

 - 6.0m at 3.6g/t gold including 1.0m at 10.2g/t gold (EM21-145)
 - 3.0m at 5.2g/t gold including 1.0m at 15.0g/t gold (EM21-159)
 - 6.6m at 3.1g/t gold (EM21-158)
- Results confirm the extensions of historical drilling results of
 - 6.0m at 3.3g/t gold including 2m at 9.3g/t gold (EM17-126)
 - 5.5m at 6.1g/t gold including 1.5m at 19.2g/t gold (83CH029)
- Assays also confirm the parallel Nisto trend extends to NW Zone, is gold bearing and carries high-grade mineralisation with
 - 8.9m at 1.5g/t gold including 1.5m at 7.3 g/t gold (EM21-157)
- Nisto trend is approximately 100-200m below the Mine Horizon and was discovered by Benz in 2021 via DHEM on historical holes
- NW Zone mineralisation spread over 400m x 500m and open in all directions and is a part of the 6km gold bearing trend identified by Benz using both FLEM and BHEM surveys
- Future drilling into NW Zone will target the high-grade plunging shoots identified by this scout drill program
- 50,000 drilling program well advanced 52 holes for 25,000m done 15,500m assays pending with multiple visible gold intercepts to come from D and E Zones
- 3rd drill rig secured to arrive in second half of August to accelerate exploration

Toronto, August 3, 2021 - Benz Mining Corp. (TSXV: BZ) (ASX: BNZ) (the Company or Benz) is pleased to announce long awaited assays results for the start of its 2021 drilling campaign. Results come predominantly from NW Zone which is quickly emerging as a new high-grade lodes system and has the potential to become an integral part of the Eastmain deposit.

Figure 1: 2021 drilling location with significant assays results, EM conductors and simplified geology

To view an enhanced version of this graphic, please visit: https://orders.newsfilecorp.com/files/1818/91845_276ee39d54d89ad6_001full.jpg

CEO, Xavier Braud, commented: "We are glad to finally be able to release assay results from Eastmain, especially when they are great results. DHEM of historical holes at NW Zone had showed us many undrilled conductors. We drilled them and now we know that NW Zone is mineralised and presents the exact same characteristics as A, B and C Zones and poses as a new high-grade zone of the Eastmain deposit. This first pass scout drilling is wide spaced with drilling centres 100m apart and more. We have identified mineralisation over a large 400x 400m area and, more importantly, we have clearly identified two mineralised parallel horizons, both of which are proving to be gold bearing.

"Eastmain is delivering above expectations and our exploration methodology utilising electromagnetics to guide discoveries continues to be extremely successful. We have identified conductors over a strike length of 6km and, to date, we haven't drilled a single conductor which has not returned the right geology. Every target

04.12.2025 Seite 1/14 we drill bring more information and we are gradually unlocking the full potential of the Eastmain deposit.

We now have over 150 DHEM conductors in the system and we are systematically drilling them. The DHEM data from NW Zone shows strong undrilled off-hole conductors near our high-grade intervals. Follow up drilling will start as soon as we increase our drilling capacity with a third rig arriving in the second half of August."

Figure 2: Map view of the Eastmain project with historical and current high grade drill results and 2021 drilling pending assays with EM conductors and simplified geology.

To view an enhanced version of this graphic, please visit: https://orders.newsfilecorp.com/files/1818/91845_276ee39d54d89ad6_002full.jpg

The NW Zone is located about 600m to the NW of the A Zone mineralised lens and camp infrastructure and can be accessed by a trail in summer. The mineralised horizon is associated with a strongly biotite, sericite, silica and carbonate altered mylonite located within deformed and altered ultramafic rocks. Sulphide content varies from 1-2% to up to 20% in sulphide veins, with xenoliths of enclosing rocks, often associated with quartz veins. There are also stringers and patches of sulphides. Garnet porphyroblasts are also observed in association with the more biotite altered rocks.

Main sulphides are pyrrhotite, chalcopyrite, pyrite and sphalerite. Visible gold was observed in holes EM21-143, EM21-146 and EM21-158.

The newly discovered Nisto trend at the NW Zone and A Zone is found between 100 and 200m deeper than the Mine Horizon. Mineralisation is hosted at the contact between strongly deformed and altered sediments (wackes and conglomerate) and ultramafics with stringers and patches of pyrrhotite and chalcopyrite. Garnet porphyroblasts are locally observed in association with the more biotite rich rocks.

The results in this release are a mix of standard 50g charge fire assays and metallic screen fire assays. The choice of method was based on geological observations with samples showing strong visual mineralisation assayed directly by metallic screen fire assays.

All coarse crush rejects from this set of results have been shipped to Australia to be re-assayed by PhotonAssay.

The 16,000 samples re-analysis of 2020 drilling rejects by PhotonAssay is progressing with samples at Minanalytical Perth and Kalgoorlie facilities.

Figure 3: Eastmain Project Long Section with existing resource, FLEM and DHEM conductors and drilling to date with additional high grade NW Zone intercepts.

To view an enhanced version of this graphic, please visit: https://orders.newsfilecorp.com/files/1818/91845_276ee39d54d89ad6_003full.jpg

The Eastmain Gold Project, situated on the Upper Eastmain Greenstone Belt in Quebec, Canada, currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold (Indicated: 236,500oz at 8.2gtp gold, Inferred: 139,300oz at 7.5gtp gold). The existing gold mineralisation is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite in highly deformed and altered rocks making it

04.12.2025 Seite 2/14

amenable to detection using electromagnetic techniques. Multiple gold occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited but highly encouraging testing outside the existing resource area. Benz has subsequently identified over 150 DHEM conductors over a strike length of 6km which is open in all directions.

This press release was prepared under supervision and approved by Dr. Danielle Giovenazzo, P.Geo, acting as Benz's qualified person under National Instrument 43-101.

About Benz Mining Corp.

Benz Mining Corp. brings together an experienced team of geoscientists and finance professionals with a focused strategy to acquire and develop mineral projects with an emphasis on safe, low risk jurisdictions favourable to mining development. Benz is earning a 100% interest in the former producing high grade Eastmain gold mine, Ruby Hill West and Ruby Hill East projects in Quebec.

The Eastmain Gold Project is situated within the Upper Eastmain Greenstone Belt in Quebec, Canada and currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold. The existing gold mineralization is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite making it amenable to detection by electromagnetics. Several gold mineralization occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited testing outside the existing resource area.

Figure 4: Benz tenure over Upper Eastmain Greenstone Belt simplified geology.

To view an enhanced version of this graphic, please visit: https://orders.newsfilecorp.com/files/1818/91845_276ee39d54d89ad6_004full.jpg

On behalf of the Board of Directors of Benz Mining Corp. Xavier Braud, CEO

For more information please contact:

Paul Fowler Head of Corporate Development (Canada) Benz Mining Corp. Telephone: +1 416 356 8165

Telephone: +1 416 356 8165 Email: info@benzmining.com

Xavier Braud CEO, Head of Corporate Development (Aus) Benz Mining Corp.

Telephone +61 423 237 659 Email: info@benzmining.com

Forward-Looking Information: Certain statements contained in this news release may constitute "forward-looking information" as such term is used in applicable Canadian securities laws. Forward-looking information is based on plans, expectations and estimates of management at the date the information is provided and is subject to certain factors and assumptions, including, that the Company's financial condition and development plans do not change as a result of unforeseen events and that the Company obtains regulatory approval. Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as

04.12.2025 Seite 3/14

set forth in the Company's continuous disclosure filings filed under the Company's profile at www.sedar.com. The Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

Competent Person's Statements: The information in this report that relates to Exploration Results is based on and fairly represents information and supporting information compiled by Mr Xavier Braud, who is a member of the Australian Institute of Geoscientists (AIG membership ID:6963). Mr Braud is a consultant to the Company and has sufficient experience in the style of mineralization and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Braud holds securities in Benz Mining Corp. and consents to the inclusion of all technical statements based on his information in the form and context in which they appear.

The information in this announcement that relates to the Inferred Mineral Resource was first reported under the JORC Code by the Company in its prospectus released to the ASX on 21 December 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and confirms that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement

Appendix 1: Drilling and assays data

Table 1: Drillholes collar information

Hole ID	X_NAD83_Z18N	Y_NAD83_Z18N	Elevation	Azimutl	n Dip	Total Depth
EM21-143	698713	5798618	485	215	-57	567
EM21-144	698568	5799058	485	215	-75	477
EM21-145	698315	5799210	487	215	-60	333
EM21-146	698280	5799265	495	215	-60	297
EM21-147	698184	5799041	490	220	-55	225
EM21-148	698192	5799167	491	220	-55	240
EM21-149	698014	5799532	487	217	-55	223
EM21-150	698182	5799743	510	217	-55	201
EM21-151	698569	5798713	483	216	-60	657
EM21-152	699236	5798936	508	225	-75	637
EM21-153	699248	5798810	480	225	-80	618
EM21-154	699247	5799006	484	225	-75	675
EM21-155	698518	5798790	486	220	-60	585
EM21-156	698582	5799177	485	215	-75	507
EM21-157	698434	5799154	485	240	-58	471
EM21-158	698405	5799250	483	245	-59	648
EM21-159	698520	5799290	484	245	-65	450

Table 2: Significant assays

Hole ID	From	To	Total Length	ı Au g/t	Zone	
EM21-143	208.5	211.5	3.00	16.58	Zone A	Mine Horizon
Including	210	211.5	1.50	32.8		VG*
EM21-144	304.95	307.25	2.30	0.30		
Including	305.45	306	0.55	0.568		
	357	362	5	0.62	NW Zone	Mine Horizon
Including	361.4	362	0.60	1.283		
	431.44	431.84	0.40	1.284		

04.12.2025 Seite 4/14

Hole ID	From	То	Total Leng	ıth Au a/t	Zone	
EM21-145		240.5	6.00	3.56	NW Zone	Mine Horizon
Including		238	1.00	10.17	14W Zone	WIIIIC TIONZON
EM21-146		238	7.80	8.73	NW Zone	Mine Horizon
Including		235	2.00	16.33	NVV ZONE	VG*
Including		237	1.00	32.56		٧٥
-					NIM Zana	Mina Harizan
EM21-147		92.4	1.0	3.22	NW Zone	Mine Horizon
EM21-148			0.4	0.764	NW Zone	Mine Horizon
EN4 04 440	185	185.5		0.734		
EM21-149		70.6	1.0	0.574	Hillhouse	
	113.0	114.0	1.0	5.495	_	Mine Horizon
EM21-150				gnificant i		
EM21-151			1.0		Zone A west	: Mine horizon
	403.0		0.4	0.356		Nisto trend
EM21-152			1.45	1.64		
Including	233.45	233.75	0.3	6.54		
	592.0	593.5	1.5	0.42	Zone A ext	Mine Horizon
EM21-153	216.4	217.4	1.0	0.82	Zone A	
	223.5	224.7	1.2	0.869		
	225.9	226.3	0.4	1.579		
		511.12		0.732		Mine Horizon
	519.0		1.0	1.415		Mine Horizon
EM21-154		15.4	1.4		Zone A ext	
		254.5		0.358		
		535.9		0.376		Mine Horizon
EM21-155			0.9		Zone A west	:Mine Horizon
LIVIZ I-100	501.5		0.5	1.123	Zone A west	Nisto trend
	511.1		0.4	0.907		Nisto trend
EM21-156	-	21.0	1.0	0.468	NW zone	เพรเซ แษกน
EIVIZ 1-130					INVV ZUITE	
	159.3		0.5	3.795		
		165.4		0.317		Mine Heniman
	369.8		4.4	0.713		Mine Horizon
	417.0		6.0	0.735		
Including	417.0		1.4	1.43		
EM21-157			0.38	2.852	NW zone :	
	376.5		1.5	1.39		Mine Horizon
		406.0		1.50		Nisto trend
Including	400.0	401.5	1.5	7.254		Nisto trend
EM21-158	284.8	291.35	6.55	3.11	NW Zone:	Mine Horizon *VG
Including	288.7	290	1.3	5.038		
3	293.3		1.2	0.435	NW Zone:	Mine Horizon
		543.07		0.705	0	Nisto trend
EM21-159		270.3		0.33	NW Zone:	. Hoto trond
_IVIZ 1 100	371	372.5		0.43	1444 ZOIIG.	Mine Horizon
	375	378	3	5.161		Mine Horizon
Including	375	376	1	14.97		Mine Horizon
moluding						IVIII IE I IUI IZUII
	426.1	426.55	0.45	0.633		

Significant assays reported are assays >0.2g/t Au. Composites are calculated by weighted average allowing for up to 1m internal dilution

Table 3: Assays data

Hole number	From	To	Length	Sample Type	Weight	Gold g/t (Au)
EM21-143	67.5	69	1.5	Fire Assay	3.3	0.13
EM21-143	201	202.5	1.5	Fire Assay	3.24	0.195
EM21-143	208.5	210	1.5	Fire Assav	3.34	0.35

04.12.2025 Seite 5/14

Hole number	From	То	Length	Sample Type	Weight	Gold g/t (Au)
EM21-143	210	211.5	1.5	Fire Assay	3.57	32.8
EM21-143	410	411.5	1.5	Fire Assay	3.43	0.169
EM21-143	436	437	1	Fire Assay	2.38	0.221
EM21-143	452	453	1	Metallic sieve	2.44	0.111
EM21-144	63.39	63.9	0.51	Fire Assay	1.1	0.244
EM21-144	184.6	185.3	0.7	Fire Assay	1.52	0.245
EM21-144		290.83	0.68	Fire Assay	1.68	0.411
EM21-144		305.45	0.5	Fire Assay	1.16	0.207
EM21-144	305.45		0.55	Fire Assay	1.44	0.568
EM21-144	306	306.75	0.75	Fire Assay	1.83	0.201
EM21-144		307.25	0.75	Fire Assay	1.19	0.265
EM21-144	339	339.5	0.5	Fire Assay	1.17	0.203
EM21-144	355.75		0.55	Metallic sieve	1.42	0.116
EM21-144	357	358	1	Metallic sieve	2.4	1.031
EM21-144	358	359	1	Metallic sieve	2.02	0.623
EM21-144	359	360.4	1.4	Metallic sieve	4.17	0.466
EM21-144	361.4	362	0.6	Fire Assay	1.49	1.283
EM21-144		431.84	0.4	Fire Assay	0.86	1.284
EM21-145	47.3	48.7	1.4	Fire Assay	2.82	0.11
EM21-145	55	56.5	1.5	Fire Assay	3.08	0.174
EM21-145	60	60.5	0.5	Fire Assay	1.12	0.204
EM21-145	195	196.06	1.06	Fire Assay	2.2	0.156
EM21-145	225	226	1	Fire Assay	1.93	0.246
EM21-145	227	228	1	Fire Assay	2.08	0.533
EM21-145	231.2	232	8.0	Fire Assay	1.72	0.384
EM21-145	233	234.5	1.5	Metallic sieve	3.04	0.157
EM21-145	234.5	236	1.5	Metallic sieve	2.93	1.044
EM21-145	236	237	1	Metallic sieve	2.42	3.630
EM21-145	237	238	1	Metallic sieve	2.05	10.169
EM21-145	238	239	1	Metallic sieve	1.96	0.281
EM21-145	239	240.5	1.5	Metallic sieve	2.62	3.820
EM21-145	267.2	268.7	1.5	Fire Assay	3.05	0.113
EM21-145	268.7	269.6	0.9	Fire Assay	1.85	0.264
EM21-146	203	204	1	Fire Assay	2.24	0.117
EM21-146	228	229	1	Fire Assay	2.7	0.17
EM21-146	229	229.5	0.5	Fire Assay	1.32	0.12
EM21-146	230.2	231	0.8	Metallic sieve	1.94	0.63
EM21-146	231	232	1	Metallic sieve	2.13	1.76
EM21-146	232	233	1	Metallic sieve	2.13	0.21
EM21-146			1	Metallic sieve	2.69	
	233	234				15.78
EM21-146	234	235	1	Metallic sieve	2.64	16.88
EM21-146	235	236	1	Metallic sieve	2.06	0.17
EM21-146	236	237	1	Metallic sieve	2.5	32.56
EM21-146	237	238	1	Metallic sieve	2.18	0.21
EM21-146	241	241.5	0.5	Fire Assay	0.83	0.854
EM21-146	257.4	258	0.6	Fire Assay	1.52	0.293
EM21-147	91.4	92.4	1	Fire Assay	2.06	3.22
EM21-147	113	114	1	Fire Assay	2.21	0.211
EM21-147	134	135.2	1.2	Fire Assay	2.63	0.171
EM21-148	47.6	48.3	0.7	Fire Assay	1.73	0.202
EM21-148	146.9	147.3	0.4	Fire Assay	0.91	0.764
EM21-148	185	185.5	0.5	Fire Assay	1.04	0.734
EM21-149	65.3	66	0.7	Fire Assay	1.64	0.123
EM21-149	69	69.6	0.6	Fire Assay	1.43	0.132
EM21-149	69.6	70.6	1	Fire Assay	1.51	0.574
EM21-149	76	76.7	0.7	Fire Assay	1.63	0.123
EM21-149	113	114	1	Fire Assay	2.19	5.495
				•		

04.12.2025 Seite 6/14

Hala numbar	From	Т.	Longth	Comple Type	\\/oiabt	
Hole number EM21-149	169	To 169.7	0.7	Sample Type Fire Assay	1.28	0.367
EM21-149	187	187.5	0.7	Fire Assay	1.15	0.367
EM21-149	173	173.6	0.5	Fire Assay	1.52	0.204
EM21-150	175	173.0	1	Fire Assay	2.66	0.207
EM21-150	25.5	27	1.5	Fire Assay	2.75	0.117
EM21-151	205	206	1.5	•		
EM21-151	205	206	1	Fire Assay	1.98	0.119
			1.5	Fire Assay	1.82	0.696
EM21-151	207	208.5		Fire Assay	3.01	0.119
EM21-151	403 403.4	403.4	0.4	Fire Assay	0.82	0.356
EM21-151		403.9	0.5 1	Fire Assay	0.91	0.173
EM21-151	516	517		Fire Assay	2.36	0.118
EM21-151	522	522.5	0.5	Fire Assay	1.12	0.113
EM21-151	523.8	525	1.2	Fire Assay	2.81	0.169
EM21-152		233.75	0.3	Fire Assay	0.67	6.541
EM21-152	234.35		0.55	Fire Assay	0.94	0.708
EM21-152	427.5	428	0.5	Fire Assay	1.15	0.195
EM21-152	461.9	463	1.1	Fire Assay	2.87	0.121
EM21-152	555.3	557	1.7	Fire Assay	4.5	0.23
EM21-152	573	573.5	0.5	Fire Assay	1.15	0.129
EM21-152	592	593.5	1.5	Fire Assay	3.59	0.42
EM21-153	89.6	90.3	0.7	Fire Assay	1.29	0.293
EM21-153	90.3	90.9	0.6	Fire Assay	1.42	0.134
EM21-153	216.4	217.4	1	Fire Assay	2.4	0.82
EM21-153		217.75	0.35	Fire Assay	0.95	0.158
EM21-153		218.15	0.4	Fire Assay	1.22	0.297
EM21-153		219.85	0.55	Fire Assay	1	0.118
EM21-153	223.5	224.7	1.2	Fire Assay	2.46	0.869
EM21-153	225.9	226.3	0.4	Fire Assay	0.86	1.579
EM21-153	228	229	1	Fire Assay	2.28	0.311
EM21-153		309.34	0.82	Fire Assay	2.17	0.156
EM21-153	313.61	314	0.39	Fire Assay	1.08	0.101
EM21-153	322	322.35	0.35	Fire Assay	0.81	0.215
EM21-153	325.09		0.31	Fire Assay	0.83	0.144
EM21-153		326.73	0.53	Fire Assay	1.47	0.179
EM21-153		396	0.5	Fire Assay	1.09	0.17
EM21-153		511.12	1.12	Fire Assay	2.29	0.732
EM21-153	519	520	1	Fire Assay	2.07	1.415
EM21-153		520.45	0.45	Fire Assay	1.41	0.284
EM21-154	14	15.4	1.4	Fire Assay	3.13	0.454
EM21-154	253	254.5	1.5	Fire Assay	3.8	0.358
EM21-154	254.5	256	1.5	Fire Assay	3.61	0.134
EM21-154	516.6	516.9	0.3	Fire Assay	0.62	0.302
EM21-154	535.5	535.9	0.4	Fire Assay	1.11	0.376
EM21-154	551.5	551.8	0.3	Fire Assay	0.66	0.115
EM21-154	598.6	600	1.4	Fire Assay	3.6	0.103
EM21-154	600	600.9	0.9	Fire Assay	2.1	0.188
EM21-154	600.9	601.7	8.0	Fire Assay	1.79	0.23
EM21-154	601.7	602.5	0.8	Fire Assay	2.02	0.125
EM21-154	604.3	605	0.7	Fire Assay	1.51	0.107
EM21-155	63.55	64.5	0.95	Fire Assay	2.27	0.118
EM21-155	93.5	94.1	0.6	Fire Assay	1.4	0.128
EM21-155	135	135.55	0.55	Fire Assay	1.38	0.187
EM21-155	136.55	138	1.45	Fire Assay	2.95	0.165
EM21-155	148.7	149.1	0.4	Fire Assay	1.17	0.22
EM21-155	164	164.9	0.9	Fire Assay	2.64	2.176
EM21-155	378.8	379.2	0.4	Fire Assay	1.06	0.227
EM21-155	379.9	380.4	0.5	Fire Assay	2.16	0.159
				-		

04.12.2025 Seite 7/14

Hole number	From	То	Length	Sample Type	Weight	Gold g/t (Au)
EM21-155	501.5	502	0.5	Fire Assay	1.25	1.123
EM21-155	502	503	1	Fire Assay	2.46	0.195
EM21-155	504	505	1	Fire Assay	2.54	0.123
EM21-155	511.1	511.5	0.4	Fire Assay	0.9	0.907
EM21-155	531	532	1	Fire Assay	2.3	0.134
EM21-155	543	544.5	1.5	Fire Assay	3.77	0.21
EM21-155	546	547	1	Fire Assay	3.73	0.193
EM21-155	547	549	2	Fire Assay	3.43	0.22
EM21-155	550.5	552	1.5	Fire Assay	3.89	0.176
EM21-156	20	21	1	Fire Assay	2.56	0.468
EM21-156	21	22.5	1.5	Fire Assay	3.78	0.102
EM21-156	25.5	26.1	0.6	Fire Assay	1.38	0.102
EM21-156	26.5	27	0.5	Fire Assay	1.11	0.239
EM21-156	27	28.5	1.5	Fire Assay	3.6	0.152
EM21-156	37	38	1.5	Fire Assay	2.34	0.132
EM21-156	159.3	159.8	0.5	Fire Assay	1.17	3.795
EM21-156	165	165.4	0.3	Fire Assay	0.86	0.317
EM21-156		249	0.4	Fire Assay	1.14	
EM21-156	248.5		0.5 1	Metallic sieve	2.25	0.258
	369.8	370.8				0.612
EM21-156	370.8	372.2	1.4	Metallic sieve	3.33	1.409
EM21-156	372.2	373.2	1	Metallic sieve	2.26	0.342
EM21-156	373.2	374.2	1	Metallic sieve	2.15	0.212
EM21-156	416.07	417	0.93	Metallic sieve	2.02	0.179
EM21-156	417	418	1	Metallic sieve	2.26	1.922
EM21-156	418	419.4	1.4	Metallic sieve	3.55	1.084
EM21-156	419.4	420.3	0.9	Metallic sieve	1.76	0.128
EM21-156	420.3	421.5	1.2	Metallic sieve	2.55	0.167
EM21-156	421.5	423	1.5	Metallic sieve	3.09	0.438
EM21-157	50.93	52.3	1.37	Fire Assay	3.22	0.25
EM21-157	182.94			Fire Assay	4.02	0.157
EM21-157	209	210	1	Fire Assay	2.36	0.139
EM21-157	283.43			Fire Assay	1.91	0.105
EM21-157		293.68		Metallic sieve	1.31	0.244
EM21-157	301.64			Fire Assay	2.49	0.13
EM21-157	344.32			Fire Assay	0.94	2.852
EM21-157	347.16		0.84	Fire Assay	1.95	0.207
EM21-157	351	352.5	1.5	Fire Assay	3.31	0.168
EM21-157	376.5	378	1.5	Fire Assay	3.06	1.39
EM21-157	397.08	398.5	1.42		2.95	0.215
EM21-157	398.5	400	1.5	Metallic sieve	3.36	0.292
EM21-157	400	401.5	1.5	Fire Assay	3.13	7.254
EM21-157	401.5	403	1.5	Metallic sieve	3.31	0.646
EM21-157	404.5	406	1.5	Fire Assay	1.22	0.232
EM21-157	404.5	406	1.5	Duplicate	1.8	0.455
EM21-158	282	283.5	1.5	Fire Assay	3.2	0.13
EM21-158	283.5	284.8	1.3	Metallic sieve	2.75	0.181
EM21-158	284.8	286.1	1.3	Metallic sieve	2.74	3.78
EM21-158	286.1	287.2	1.1	Metallic sieve	3.03	3.991
EM21-158	287.2	288.7	1.5	Metallic sieve	4	2.39
EM21-158	288.7	290	1.3	Metallic sieve	3.08	5.028
EM21-158		291.35		Metallic sieve	2.98	0.687
EM21-158	291.35			Metallic sieve	2.46	0.217
EM21-158	293.3		1.2	Fire Assay	2.1	0.435
EM21-158	423	424.5	1.5	Fire Assay	3.52	0.174
EM21-158	516.7	518	1.3	Fire Assay	2.98	0.124
EM21-158		543.07		Fire Assay	1.69	0.705
EM21-158	603	604.5	1.5	Fire Assay	3.08	0.203
		-	-			

04.12.2025 Seite 8/14

Hole number	From	To	Length	Sample Type	Weight	Gold g/t (Au)
EM21-158	646	646.8	0.8	Fire Assay	1.94	0.145
EM21-159	138	139	1		2.06	0.24
EM21-159	264	265	1		1.97	0.2
EM21-159	269.9	270.3	0.4		1.08	0.33
EM21-159	342.9	343.5	0.6		1.65	0.123
EM21-159	364	365	1		2.37	0.12
EM21-159	365	366	1		2.71	0.12
EM21-159	371	372.5	1.5		3.57	0.43
EM21-159	375	376	1		4.23	14.97
EM21-159	376	377	1		4.40	0.29
EM21-159	377	378	1		2.55	0.22
EM21-159	381	382	1		2.62	0.11
EM21-159	413	413.4	0.4		1.09	0.12
EM21-159	419	420.5	1.5		4.02	0.27
EM21-159	426.1	426.55	0.45		1.07	0.633

All assays reported are Au>0.1g/t. When multiple duplicates of the same samples by different methods, best intercept is reported. N.B: All drillholes reported anomalous gold >0.1g/t.

Appendix 2: JORC Tables Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

ι.	riti	∩rı	\sim
u	HU	eri	а

JORC Code explanation

- Nature and quality of sampling (eg cut channels, random chi measurement tools appropriate to the minerals under investion or handheld XRF instruments, etc). These examples should of sampling.
- Include reference to measures taken to ensure sample repre any measurement tools or systems used.
- Aspects of the determination of mineralisation that are Mater
- In cases where 'industry standard' work has been done this variculation drilling was used to obtain 1 m samples from which charge for fire assay'). In other cases more explanation may gold that has inherent sampling problems. Unusual commod nodules) may warrant disclosure of detailed information.

Sampling techniques

Drilling techniques

Jilling techniques

Drill sample recovery

- Drill type (eg core, reverse circulation, open-hole hammer, ro and details (eg core diameter, triple or standard tube, depth type, whether core is oriented and if so, by what method, etc
- Method of recording and assessing core and chip sample red
- Measures taken to maximise sample recovery and ensure re
- Whether a relationship exists between sample recovery and occurred due to preferential loss/gain of fine/coarse material.

04.12.2025 Seite 9/14

Criteria	JORC Code explanation
Logging	 Whether core and chip samples have been geologically and support appropriate Mineral Resource estimation, mining stu Whether logging is qualitative or quantitative in nature. Core The total length and percentage of the relevant intersections
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all of the lift non-core, whether riffled, tube sampled, rotary split, etc and For all sample types, the nature, quality and appropriateness. Quality control procedures adopted for all sub-sampling stage. Measures taken to ensure that the sampling is representative for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instrum determining the analysis including instrument make and mod applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, checks) and whether acceptable levels of accuracy (ie lack destablished.
Verification of sampling and assaying	 The verification of significant intersections by either independent of twinned holes. Documentation of primary data, data entry procedures, data electronic) protocols. Discuss any adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (convorkings and other locations used in Mineral Resource esting Specification of the grid system used. Quality and adequacy of topographic control.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to esta continuity appropriate for the Mineral Resource and Ore Resolassifications applied. Whether sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sam which this is known, considering the deposit type. If the relationship between the drilling orientation and the ori considered to have introduced a sampling bias, this should be a sampling bias.
Sample security	The measures taken to ensure sample security.

04.12.2025 Seite 10/14

Criteria

JORC Code explanation

Audits or reviews

• The results of any audits or reviews of sampling techniques a

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria

JORC Code explanation

Mineral tenement and land tenure status

- Type, reference name/number, location and ow parties such as joint ventures, partnerships, over wilderness or national park and environmental states.
- The security of the tenure held at the time of replicence to operate in the area.

04.12.2025 Seite 11/14

Criteria	JORC Code explanation
Exploration done by other parties	 Acknowledgment and appraisal of exploration
Geology	 Deposit type, geological setting and style of n
5 ,	

04.12.2025 Seite 12/14

Criteria	JORC Code explanation
Drill hole Information	 A summary of all information material to the uncof the following information for all Material drill he easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on exclusion does not detract from the understanding explain why this is the case.
Data aggregation methods	 In reporting Exploration Results, weighting aver truncations (eg cutting of high grades) and cut-c Where aggregate intercepts incorporate short le grade results, the procedure used for such aggregations should be shown in detail. The assumptions used for any reporting of meta
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in If the geometry of the mineralisation with respect reported. If it is not known and only the down hole lengths effect (eg 'down hole length, true width not known
Diagrams	 Appropriate maps and sections (with scales) an significant discovery being reported These shou collar locations and appropriate sectional views
Balanced reporting	 Where comprehensive reporting of all Explorations both low and high grades and/or widths should Results.
Other substantive exploration data	 Other exploration data, if meaningful and mater geological observations; geophysical survey res method of treatment; metallurgical test results; characteristics; potential deleterious or contami
Further work	 The nature and scale of planned further work (elarge-scale step-out drilling). Diagrams clearly highlighting the areas of possi interpretations and future drilling areas, provide

Not for distribution to U.S. news wire services or dissemination in the United States.

To view the source version of this press release, please visit https://www.newsfilecorp.com/release/91845

04.12.2025 Seite 13/14

Dieser Artikel stammt von Rohstoff-Welt.de
Die URL für diesen Artikel lautet:
https://www.rohstoff-welt.de/news/390455--Benz-Mining-Announces-New-High-Grade-Gold-Shoot-Identified-at-North-West-Zone-at-Eastmain-Gold-Project.htm

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.

04.12.2025 Seite 14/14