Benz Mining: PhotonAssay of 2020 Core Underway in Perth

07.07.2021 | Newsfile

HIGHLIGHTS

- Reject samples from the 2020 drilling campaign have arrived at MinAnalytical in Perth, Western Australia for analysis by PhotonAssay
- Samples had been integrated in the laboratory schedule ahead of delivery to allow for immediate start at reception and analysis has started
- Whole rock analysis to be conducted capturing visible gold, observed in core and potentially not reflected in standard fire assays
- Historical analysis from 2010/11 programs highlighted that fire assays under called grades by on average 34% compared with screen fire assays
- Analysis run in conjunction with large scale heterogeneity test quantifying the nature of the high-grade gold at the Eastmain deposit
- Understanding and quantifying the nature of high-grade gold mineralisation will improve future resource estimate and confidence

Toronto, July 7, 2021 - Benz Mining Corp. (TSXV: BZ) (ASX: BNZ) (the Company or Benz) is pleased to announce that a single shipment of over 8t of coarse rejects from its 2020 drilling campaign has been received by MinAnalytical's Perth laboratory from Quebec.

Coarse rejects are the leftover material from the processing of core samples during the assaying process. On average, coarse rejects represent over 80% of the core samples submitted to Actlabs in Quebec for standard fire assays in 2020 (fire assays with both AAS and gravimetric finish, only using a 50g subsample of the material submitted).

The industry standard fire assay method used in the 2020 drill program includes fine grinding and pulverisation of samples to a particle size of 75µm. Due to the malleable nature of gold, nuggets with a size over 75µm have a chance of being retained in the fraction of the sample that is not analysed.

Benz geologists have observed multiple occurrences of visible gold in the core from Eastmain. Visible gold usually indicates that gold particles are larger than the 75µm of the sieve used in the fire assay preparation.

CEO Xavier Braud Commented: "The numerous observations of visible gold in core from the Eastmain Project mean that we need to use an assay method best suited to high-grade gold. PhotonAssay will give us a much better estimation of true gold grade in our drill core as the sample method removes the bias created during the sample preparation in traditional assay methods. If this round of assays shows that fire assay analytical methods have underestimated grades, then we can legitimately ask ourselves about a potential underestimation of our current resource which is based on historical fire assay results."

The coarse rejects shipped to Australia have been crushed to a size of 2mm.

The whole lot of the samples will be assayed, providing a whole rock analysis, capturing all the gold present in each sample without the bias introduced by subsampling, fine grinding and sieving.

The expectation is that a method capturing the oversized gold fraction will return more accurate assays

04.12.2025 Seite 1/17

better correlating grade and geological observations.

Figure 1: EM20-137, Fire Assay results: 1.5m at 2.8g/t Au from 519.5, 30 grains of visible gold observed (being re-assayed by PhotonAssay)

To view an enhanced version of this graphic, please visit: https://orders.newsfilecorp.com/files/1818/89648_pic1.jpg

Figure 2: EM20-132 - Fire Assay Results - 3.0m at 13.7g/t Au from 531.8m, one grain of visible gold observed (being re-assayed by PhotonAssay)

To view an enhanced version of this graphic, please visit: https://orders.newsfilecorp.com/files/1818/89648_b7095947f45009dd_004full.jpg

Screen fire assays (metallic screen) (SFA-Grav) vs. fire assays (FA-AAS) in 2010-11 drill results from the Eastmain Project

During the 2010 and 2011 drilling campaigns at Eastmain, observations of visible gold prompted the geological team to submit samples for both fire assays (FA-AAS) and screen fire assays (metallic screen) (SFA-Grav).

A total of 361 samples were submitted for analysis with 2 duplicate measurements conducted by FA-AAS and one by SFA-Grav. The average gold grade over the 361 samples by standard fire assay is 2.24g/t Au whilst metallic screen returned an average of 3.04g/t Au, an increase of 34% in the average measured grade.

The graph in Figure 3 shows a plot of the historical results by SFA-Grav versus results obtained by FA-AAS (average of the 2 duplicate results).

Figure 3: Assays by fire assays vs screen fire assays in 361 sets of duplicates from 2010 and 2011 drilling campaigns

To view an enhanced version of this graphic, please visit: https://orders.newsfilecorp.com/files/1818/89648_picture1.jpg

Both metallic screen and standard fire assay methods use a subsample from the half core sample submitted to the laboratory.

- In the case of fire assays, the aliquot (the final sample physically used for analysis) is 50g.
- In the case of metallic screen FA, the aliquot used is 1kg.

Both fire and metallic screen fire assays involve some level of preparation of the sample.

• In the case of fire assays, the whole half core sample is crushed down to a maximum particle size of 2mm. Then a subsample of 250g is pulverized until 80% of the sample passes a 75µm mesh. The final aliquot is obtained by sampling 50g from the fraction finer than 75µm.

04.12.2025 Seite 2/17

In the case of screen fire assays, the whole half core sample is crushed for a set period of time. A 1kg subsample is collected and screened through a 106µm mesh. The coarse and fine fractions are assayed separately by fire assay and the final reported result is a weighted average of the coarse and fine fraction analysis.

Screen fire assays partly remove the sampling bias introduced by the small size of the subsample and the fine grinding to 75µm used in fire assays.

Benz has used both the standard 50g fire assay with AAS and gravimetric finish and, in 2021, has used metallic screen FA with gravimetric finish for mineralised samples and those with visible gold.

Benz is currently analysing core sample rejects from its 2020 drilling campaign by PhotonAssay, a technology using high energy x-ray fluorescence.

PhotonAssay technology should be an improvement on both analytical methods for the following reasons:

- 100% of rejects sampled (>80% of the core samples originally submitted) larger sample
- No fine grinding no further processing of the material than standard 2mm crush
- No screening bias
- No destruction of the sample the samples can still be assayed by another method afterwards

Further details on PhotonAssay technology can be found here. https://www.chrysos.com.au/replacing-fire-assay

The Eastmain Gold Project, situated on the Upper Eastmain Greenstone Belt in Quebec, Canada, currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold (Indicated: 236,500oz at 8.2gtp gold, Inferred: 139,300oz at 7.5gtp gold). The existing gold mineralization is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite in highly deformed and altered rocks making it amenable to detection using electromagnetic techniques. Multiple gold occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited but highly encouraging testing outside the existing resource area.

This press release was prepared under supervision and approved by Dr. Danielle Giovenazzo, P.Geo, acting as Benz's qualified person under National Instrument 43-101.

About Benz Mining Corp.

<u>Benz Mining Corp.</u> brings together an experienced team of geoscientists and finance professionals with a focused strategy to acquire and develop mineral projects with an emphasis on safe, low risk jurisdictions favourable to mining development. Benz is earning a 100% interest in the former producing high grade Eastmain gold mine, Ruby Hill West and Ruby Hill East projects in Quebec.

The Eastmain Gold Project is situated within the Upper Eastmain Greenstone Belt in Quebec, Canada and currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold. The existing gold mineralization is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite making it amenable to detection by electromagnetics. Several gold mineralization occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited testing outside the existing resource area.

On behalf of the Board of Directors of Benz Mining Corp. Xavier Braud, CEO

For more information please contact:

04.12.2025 Seite 3/17

Paul Fowler

Head of Corporate Development (Canada)

Benz Mining Corp.

Telephone: +1 416 356 8165 Email: info@benzmining.com

Xavier Braud

CEO, Head of Corporate Development (Aus)

Benz Mining Corp.

Telephone +61 423 237 659 Email: info@benzmining.com

Forward-Looking Information: Certain statements contained in this news release may constitute "forward-looking information" as such term is used in applicable Canadian securities laws. Forward-looking information is based on plans, expectations and estimates of management at the date the information is provided and is subject to certain factors and assumptions, including, that the Company's financial condition and development plans do not change as a result of unforeseen events and that the Company obtains regulatory approval. Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as set forth in the Company's continuous disclosure filings filed under the Company's profile at www.sedar.com. The Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

Competent Person's Statements: The information in this report that relates to Exploration Results is based on and fairly represents information and supporting information compiled by Mr Xavier Braud, who is a member of the Australian Institute of Geoscientists (AIG membership ID:6963). Mr Braud is a consultant to the Company and has sufficient experience in the style of mineralization and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Braud holds securities in Benz Mining Corp. and consents to the inclusion of all technical statements based on his information in the form and context in which they appear.

The information in this announcement that relates to the Inferred Mineral Resource was first reported under the JORC Code by the Company in its prospectus released to the ASX on 21 December 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and confirms that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement

Appendix 1: Historical data (2010-11 assays data used in this release)

Table 1: Drillholes collar information

Hole_ID Easting_X_	Nad83Z18 Northing_Y_Nad83Z	18 Elevation	TotDe	oth Azimut_	at_CLR Dip_at_CLR
EM10-02698873.9	5798667	483.912	444	224	-85.39
EM10-03698822.8	5798639	484	387	246	-79.27
EM10-04698868.9	5798671	483.87	423	257	-80.27
EM10-05698835.5	5798569	484.636	330	223	-85.31

04.12.2025 Seite 4/17

EM10-12694522.2	5801514	505 309	218	-43.43
EM10-13694522.2	5801514	505 342	220	-60.35
EM10-17698705.9	5798655	484.72 315	209	-80.14
EM10-18698943.1	5798733	483.905 480	205	-86.9
EM10-19698942.5	5798733	483.944 402	239	-68.48
EM10-22698986.7	5798759	484.389 450	238	-74.98
EM10-26699084.1	5798450	481.509 279	217	-59.69
EM10-28 699082.5	5798341	480.931 249	213	-79.57
EM10-29699081.9	5798340	480.903 237	220	-53.81
EM10-30699138.9	5798265	486.53 246	199	-84.01
EM10-33699297.1	5798420	480.231 354	216	-75.79
EM10-34699296.9	5798419	480.174 366	227	-85.24
EM10-36699229.4	5798287	482.929 279	211	-76.4
EM10-37699205.7	5798177	485.568 216	217	-71.33
EM10-38699016.4	5798038	489.257 195	218	-56.09
EM10-42699425.9	5798261	481.801 351	210	-74.92
EM10-43699472.3	5798216	482.014 351	208	-80.7
EM10-46699961.3	5797734	487.645 330	209	-79.29
EM11-48698933.5	5798922	489 507	213	-62
EM11-49698933.5	5798922	488.9738534	195	-84.6
EM11-50698952.9	5798918	488 543	208	-60
EM11-51698952.9	5798918	488 573	207	-53.1
EM11-52698952.9	5798918	488 528	207	-45.1
EM11-53698952.9	5798918	488 51	207	-43.4
EM11-54698931	5798930	489 516	211	-44.9
EM11-58699142.7	5798915	485 561	215	-71.5
EM11-59699225	5798037	492 204	215	-69.9
EM11-60699284	5798500	486 552	177	-83.4
EM11-61 699346.4	5798519	483 522	203	-83.9
EM11-62699415.2	5798509	481 525	197	-78.5
EM11-63699556.1	5798429	480 507	213.75	-74
EM11-64699579	5798397	481 501	208	-73.4
EM11-65 699619.1	5798346	481 498	212	-73.4
EM11-66699619.1	5798346	481 501	208	-78.8
EM11-67699512	5798177	483 393	196	-84.9
EM11-69700000.6	5797789	486 375	200	-84.5
EM11-70700025	5797831	486 411	196	-84.5
EM11-71 700020.3	5797718	494 408	213	-70.2
EM11-72700102	5797662	498 363	212	-68
EM11-74700350	5797750	499 483	210	-75

Table 2: Assay data

C176268 EM10-040.04

1 4510 2.7	oody data	
Sample#	Hole ID Gold (g/t) method Au-AA26 (fire assay, AAS Finish)) Gold (g/t) method Au-AA26 (fire assay, AAS F
C152757	EM10-030.24	0.25
C152759	EM10-037.09	6.94
C152760	EM10-0313.3	11
C152761	EM10-0311.55	10.35
C152762	EM10-031.31	1.34
C152763	EM10-031.68	1.85
C152764	EM10-030.01	0.01
C152765	EM10-031.21	1.14
C152766	EM10-030.01	0.01
C176144	EM10-020.31	0.41
C176145	EM10-023.05	2.78
C176146	EM10-022.27	2.07
C176147	EM10-02 0.48	0.55
C176148	EM10-02 0.49	0.41

0.04

04.12.2025 Seite 5/17

C176269	EM10-042.29	1.63
	EM10-04 24.3	21.9
	EM10-040.86	0.41
C176276	EM10-040.4	0.31
C176278	EM10-045.2	5.29
C176280	EM10-042.41	2.57
C176281	EM10-040.89	0.69
	EM10-040.96	0.95
	EM10-041.37	1.26
	EM10-040.29	0.28
	EM10-05 0.42	0.42
	EM10-051	1.19
	EM10-05 0.1	0.09
	EM10-05 0.21	0.17
	EM10-05 1.71 EM10-05 0.03	1.87
C176426	EM10-12 0.09	0.01 0.06
	EM10-120.09 EM10-120.96	0.86
	EM10-12 1.24	0.88
	EM10-121.1	1.22
	EM10-120.15	0.12
	EM10-120.11	0.1
	EM10-120.24	0.27
C178208	EM10-121.09	0.55
C178209	EM10-120.53	0.45
C178221	EM10-120.11	0.11
	EM10-126.75	7.82
	EM10-120.02	0.04
	EM10-13 0.02	0.02
	EM10-13 10.1	10.75
	EM10-13 0.03	0.04
C178257	EM10-130.01	0.005
	EM10-135.57 EM10-130.18	6.08 0.18
	EM10-130.005	0.10
	EM10-136.79	6.09
	EM10-13 0.13	0.08
C178267	EM10-130.01	0.01
C178268	EM10-133.63	3.66
C178269	EM10-13 0.96	0.98
C178273	EM10-13 0.01	0.01
	EM10-132.39	2.95
	EM10-130.02	0.02
	EM10-170.51	0.51
	EM10-179.38	9.98
	EM10-17 0.06	0.06
	EM10-180.04	0.04
	EM10-181.09	1.09
	EM10-18 0.04 EM10-19 0.56	0.04 0.55
	EM10-190.36 EM10-192.35	2.56
C179768	EM10-193.14	3.76
C179769	EM10-197.36	8
C179770	EM10-192.24	2.43
C179771	EM10-190.79	0.71
C179772	EM10-1911.65	10.6
C179773	EM10-191.56	1.85
C179774	EM10-19 0.49	0.64

04.12.2025 Seite 6/17

C179776 EM10-194.13	4.29
C179777 EM10-19 0.35	0.12
C179778 EM10-190.03	0.05
C179779 EM10-190.01	0.06
C179780 EM10-193.49	4.4
C179781 EM10-190.03	0.02
G0779169 EM10-03 0.01	0.005
G0779397 EM10-33 0.01	0.01
G0779398 EM10-33 1.02	1.16
G0779399 EM10-33 4.22	4.32
G0779872 EM10-18 0.02	0.01
G0779873 EM10-18 1.03	0.37
G0779874 EM10-18 0.04	0.03
H875044 EM10-22 0.67	0.6
H875045 EM10-223.93	4.22
H875046 EM10-22 0.05	0.02
H875047 EM10-22 0.05	0.02
H875048 EM10-22 0.005	0.33
H875049 EM10-22 0.47	0.20
H875153 EM10-260.01	0.21
H875154 EM10-261.3	1.55
H875155 EM10-260.06	0.06
H875171 EM10-260.59	0.58
H875172 EM10-261.09	0.56
H875173 EM10-260.005	0.97
H875183 EM10-280.09	0.005
H875184 EM10-288.29	10.7
H875185 EM10-280.05	0.16
H875186 EM10-281.16	0.72
H875187 EM10-282.24	2.3
H875188 EM10-280.67	2.3 0.78
H875189 EM10-280.74	0.78
H875190 EM10-286.73	6.9
H875191 EM10-285.43	7.36
H875192 EM10-2813.35	12.35
H875193 EM10-28 0.75	0.84
H875194 EM10-288.25	7.92
H875195 EM10-2824.9	24.9
H875196 EM10-2817.85	16.9
H875197 EM10-2813.95	13.25
H875198 EM10-2812.95	12.5
H875199 EM10-2825.2	24.3
H875201 EM10-285.22	5.3
H875202 EM10-2815	13.8
H875203 EM10-28 2.28	2.49
H875204 EM10-280.2	0.14
H875215 EM10-30 0.02	0.02
H875216 EM10-303.19	2.74
H875217 EM10-30 0.01	0.02
H875234 EM10-3010	9.74
H875235 EM10-30 0.4	0.6
H875236 EM10-30 0.01	0.02
H875237 EM10-30 0.03	0.02
H875238 EM10-30 2.18	2.25
H875239 EM10-30 0.17	0.19
H875338 EM10-34 0.02	0.03
H875339 EM10-341.35	1.43
H875340 EM10-34 0.1	0.11
	-

04.12.2025 Seite 7/17

H975342	EM10-340.18	1.01
	EM10-340.16	0.37
	EM10-34 0.44	0.47
	EM10-33 0.13	0.58
	EM10-330.13	0.11
H875451	EM10-220.06	0.07
H875452	EM10-220.04	0.01
H875553	EM10-220.15	0.13
H875554	EM10-223.14	3.12
H875555	EM10-22 0.03	0.04
H875567	EM10-29 0.07	80.0
H875568	EM10-294.17	3.6
H875569	EM10-29 0.02	0.02
H875584	EM10-290.13	0.21
H875585	EM10-291.75	1.61
	EM10-29 0.03	0.02
H875601	EM10-29 0.03	0.03
	EM10-2930.3	29.3
	EM10-29 0.4 EM10-29 0.38	0.76 0.3
	EM10-290.36 EM10-380.11	0.09
	EM10-3813.7	13
	EM10-381.4	1.72
	EM10-3817.75	17.45
	EM10-385.57	5.7
	EM10-383.12	4.56
	EM10-3810.4	9.82
	EM10-3814.3	12.6
H875712	EM10-380.16	0.16
H875713	EM10-38 0.02	0.05
H875714	EM10-381.15	1.05
H875715	EM10-38 0.02	0.01
H875874	EM10-43 0.26	0.21
H875876	EM10-434.81	4.79
	EM10-43 0.52	0.7
	EM10-430.89	0.73
	EM10-43 0.06	0.08
	EM10-37 0.04	0.07
	EM10-37 1.37	1.28
	EM10-37 2.78 EM10-37 1.99	2.82 2.11
	EM10-37 1.99 EM10-37 0.01	0.02
	EM10-42 0.39	0.02
	EM10-42 0.03	2.3
	EM10-422.21	2.08
	EM10-421.68	1.76
	EM10-420.1	0.1
H876335	EM10-46 0.11	0.1
H876336	EM10-466.21	6.24
H876337	EM10-460.22	0.21
H876367	EM10-120.01	0.01
H876368	EM10-122.31	2.41
H876369	EM10-12 0.01	0.02
H876399	EM10-13 0.03	0.03
H876401	EM10-131.43	1.48
H876402	EM10-13 0.08	0.07
	EM10-36 0.01	0.01
H8/6487	EM10-3637.8	34.9

04.12.2025 Seite 8/17

H876488	EM10-360.01	0.16
H876494	EM10-36 0.58	0.2
H876495	EM10-3635.6	34.7
H876496	EM10-36 0.01	0.04
H877516	EM11-48 0.005	0.01
H877517	EM11-483.15	3.26
H877518	EM11-48 0.03	0.04
H877686	EM11-49 0.59	0.55
H877687	EM11-49 0.06	0.08
H877688	EM11-49 0.61	0.41
H877689	EM11-491.74	1.83
H877690	EM11-490.34	0.37
H877852	EM11-49 0.005	0.005
H877853	EM11-49 1.65	1.94
H877854	EM11-49 0.03	0.02
J423462	EM11-5011.9	11.1
J423553	EM11-50 0.04	0.04
J423554	EM11-50 0.7	0.74
J423555	EM11-50 0.005	0.005
J423637	EM11-51 0.05	0.03
J423638	EM11-51 0.27	0.27
J423639	EM11-51 0.01	0.01
J423793	EM11-51 0.13	0.04
J423794	EM11-51 0.35	0.23
J423795	EM11-51 0.005	0.005
J423815	EM11-51 0.45	0.47
J423816	EM11-51 5.38	5.31
J423817	EM11-51 0.005	0.005
J423827	EM11-51 0.07	0.07
J423828	EM11-51 0.85	1.16
J423829	EM11-51 0.005	0.005
J423871	EM11-51 0.03	0.08
J423872	EM11-51 1.39	1.45
J423873	EM11-51 0.005	0.01
J425655	EM11-520.76	0.7
J425656	EM11-522.06	2.13
J425657	EM11-523.78	3.78
J425658	EM11-521.83	1.82
J425659	EM11-521.32	1.41
J425660	EM11-52 0.26	0.28
J425661	EM11-52 0.42	0.37
J425662	EM11-520.14	0.12
J425693	EM11-52 0.56	0.64
J425694	EM11-52 0.62	0.62
J425695	EM11-52 8.87	8.97
J425696	EM11-522.95	3.16
J425697	EM11-52 0.27	0.23
J425698	EM11-521.47	1.8
J425699	EM11-524.18	3.9
J425701	EM11-5214.3	15.6
J425702	EM11-522.39	1.72
J425703	EM11-522.3	2.5
J425704	EM11-527.37	7.22
J425705	EM11-524.47	4.51
J425706	EM11-524.36	4.09
J425707	EM11-52 0.99	0.85 0.22
J425708 J425709	EM11-52 0.22 EM11-52 0.55	0.22
J72J1U3	LIVITI UZ U.UU	0.55

04.12.2025 Seite 9/17

J425710	EM11-521.12	1.36
J425711	EM11-521.68	1.68
J425970	EM11-540.14	0.14
J425971	EM11-541.83	2.26
J425972	EM11-540.31	0.36
K561587		0.1
K561588	EM11-588.41	8.01
K561589	EM11-580.07	0.08
K561590	EM11-58 0.01	0.01
	EM11-581.15	1.31
K561592	EM11-58 0.005	0.005
K561662	EM11-58 0.005	0.005
K561663	EM11-580.8	0.9
K561664	EM11-58 0.005	0.01
K561766	EM11-59 0.32	0.03
K561767	EM11-59 0.07	0.07
K561768	EM11-59 0.3	0.35
K561769	EM11-591.52	1.75
K561770	EM11-59 0.13	0.2
K561771	EM11-590.33	0.26
	EM11-59 0.69	0.9
K561851	EM11-60 0.005	0.01
	EM11-60 0.63	0.57
	EM11-60 2.75	2.54
	EM11-60 0.02	0.02
	EM11-60 0.01	0.02
	EM11-60 4.02	3.34
	EM11-60 0.24	0.01
	EM11-61 0.03 EM11-61 0.09	0.03 0.12
	EM11-61 0.005	0.12
K563427	EM11-61 0.003	0.01
K563428	EM11-611.83	2.46
K563429	EM11-615.33	5.61
K563430	EM11-61 0.06	0.06
K563431	EM11-61 0.02	0.02
K563435	EM11-61 0.11	0.12
K563436	EM11-615.5	5.53
K563437	EM11-61 0.02	0.03
K563986	EM11-62 0.02	0.01
K563987	EM11-62 0.24	0.29
K563988	EM11-62 0.07	0.05
L758193	EM11-63 0.22	0.22
L758194	EM11-630.85	0.91
L758195	EM11-630.2	0.32
L758196	EM11-631.07	1.35
L758197	EM11-630.08	0.11
L758198	EM11-631.66	1.44
L758381	EM11-640.02	0.02
L758382	EM11-647.11	6.19
L758383	EM11-640.03	0.03
L758538	EM11-640.51	0.56
L758539	EM11-640.86	0.85
L758540	EM11-640.14	0.19
L758817	EM11-65 0.01	0.005
L758818	EM11-652.5	2.39
L758819	EM11-6515.5	14.55
L758820	EM11-65 6.85	6.24

04.12.2025 Seite 10/17

L758821	EM11-65 0.79	0.93
L758822	EM11-651.73	1.57
L758823	EM11-651.24	1.03
L760023	EM11-66 0.83	0.61
L760024	EM11-66 0.13	0.17
L760026	EM11-661.08	0.88
L760027	EM11-66 0.48	0.81
L760028	EM11-661.63	1.65
L760029	EM11-66 6.63	4.96
L760030	EM11-66 0.33	0.6
L760031	EM11-66 0.19	0.25
L760032	EM11-66 0.57	0.37
L760033	EM11-661.22	1.06
L760034	EM11-661.15	0.84
L760117	EM11-67 0.12	0.01
L760118	EM11-671.49	1.89
L760119	EM11-672.04	1.97
L760120	EM11-671.06	1.44
L760121	EM11-67 0.25	0.23
L760230	EM11-67 0.13	0.16
L760231 L760232	EM11-671.1 EM11-670.02	0.88 0.02
L760232	EM11-67 0.02 EM11-69 0.01	0.02
L760634	EM11-693.45	3.79
L760635	EM11-69 0.005	0.005
L760647	EM11-69 0.02	0.003
L760648	EM11-691.51	1.21
L760649	EM11-69 0.25	0.26
L760914	EM11-70 0.01	0.01
L760915	EM11-703.96	4.32
L760916	EM11-70 0.03	0.03
L760919	EM11-70 0.91	2.26
L760920	EM11-70 0.03	0.03
L760921	EM11-70 0.005	0.005
L760987	EM11-71 0.005	0.005
L760988	EM11-71 0.34	0.27
L760989	EM11-71 0.23	0.24
L761086	EM11-71 0.53	0.53
L761087	EM11-71 0.91	1.35
L761088	EM11-71 0.09	0.05
L761095 L761096	EM11-71 0.005	0.005 1.3
L761096	EM11-71 1.37 EM11-71 0.05	0.06
L777131	EM11-710.05 EM11-720.005	0.005
L777131	EM11-720.005 EM11-720.85	0.89
L777133	EM11-720.03	0.03
L777472	EM11-741.73	0.01
L777473	EM11-743.3	2.45
L777474	EM11-74 0.11	0.13
L777521	EM11-740.01	0.01
L777522	EM11-740.43	0.42
L777523	EM11-740.32	0.36
L777524	EM11-748.46	9.47
L777526	EM11-740.09	0.06
L777611	EM11-50 0.005	0.005
L777612	EM11-50 0.005	0.005
Average	2.26	2.22

Appendix 2: JORC Tables

04.12.2025 Seite 11/17

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria

JORC Code explanation

- of sampling.

 Include reference to measures taken to ensure sample repre
 - any measurement tools or systems used.Aspects of the determination of mineralisation that are Mater
 - In cases where 'industry standard' work has been done this varieties of circulation drilling was used to obtain 1 m samples from which charge for fire assay'). In other cases more explanation may gold that has inherent sampling problems. Unusual commod nodules) may warrant disclosure of detailed information.

 Nature and quality of sampling (eg cut channels, random chi measurement tools appropriate to the minerals under investion or handheld XRF instruments, etc). These examples should

Drilling techniques

Sampling techniques

 Drill type (eg core, reverse circulation, open-hole hammer, ro and details (eg core diameter, triple or standard tube, depth type, whether core is oriented and if so, by what method, etc

Drill sample recovery

- Method of recording and assessing core and chip sample rec
- Measures taken to maximise sample recovery and ensure re
- Whether a relationship exists between sample recovery and occurred due to preferential loss/gain of fine/coarse material.

Logging

- Whether core and chip samples have been geologically and support appropriate Mineral Resource estimation, mining stu
- Whether logging is qualitative or quantitative in nature. Core
- The total length and percentage of the relevant intersections

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all of
- If non-core, whether riffled, tube sampled, rotary split, etc and
- For all sample types, the nature, quality and appropriateness
- Quality control procedures adopted for all sub-sampling stag
- Measures taken to ensure that the sampling is representative for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the

04.12.2025 Seite 12/17

Criteria	JORC Code explanation
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instrum determining the analysis including instrument make and mod applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, checks) and whether acceptable levels of accuracy (ie lack destablished.
Verification of sampling and assaying	 The verification of significant intersections by either independent of twinned holes. Documentation of primary data, data entry procedures, data electronic) protocols. Discuss any adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (coworkings and other locations used in Mineral Resource estin Specification of the grid system used. Quality and adequacy of topographic control.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to esta continuity appropriate for the Mineral Resource and Ore Resolutions applied. Whether sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased samwhich this is known, considering the deposit type. If the relationship between the drilling orientation and the oriconsidered to have introduced a sampling bias, this should be
Sample security	The measures taken to ensure sample security.
Audits or reviews	The results of any audits or reviews of sampling techniques
Section 2 Reporting of Exploration Results	

04.12.2025 Seite 13/17

(Criteria listed in the preceding section also apply to this section.)

Criteria

JORC Code explanation

Mineral tenement and land tenure status

- Type, reference name/number, location and ow parties such as joint ventures, partnerships, over wilderness or national park and environmental services.
 The security of the tenure held at the time of replicence to operate in the area.

04.12.2025 Seite 14/17

Criteria	JORC Code explanation
Exploration done by other parties	 Acknowledgment and appraisal of exploration
Geology	 Deposit type, geological setting and style of r

04.12.2025 Seite 15/17

Criteria	JORC Code explanation
Drill hole Information	 A summary of all information material to the undof the following information for all Material drill he easting and northing of the drill hole collar. elevation or RL (Reduced Level - elevation of dip and azimuth of the hole. down hole length and interception depth. If the exclusion of this information is justified on exclusion does not detract from the understand explain why this is the case.
Data aggregation methods	 In reporting Exploration Results, weighting aver truncations (eg cutting of high grades) and cut-of the Where aggregate intercepts incorporate short be grade results, the procedure used for such aggregations should be shown in detail. The assumptions used for any reporting of metals.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in If the geometry of the mineralisation with respect reported. If it is not known and only the down hole lengths effect (eg 'down hole length, true width not known
Diagrams	 Appropriate maps and sections (with scales) ar significant discovery being reported These show collar locations and appropriate sectional views
Balanced reporting	 Where comprehensive reporting of all Explorations both low and high grades and/or widths should Results.
Other substantive exploration data	 Other exploration data, if meaningful and mater geological observations; geophysical survey res method of treatment; metallurgical test results; characteristics; potential deleterious or contami

04.12.2025 Seite 16/17

Criteria

JORC Code explanation

Further work

- The nature and scale of planned further work (elarge-scale step-out drilling).
- Diagrams clearly highlighting the areas of possi interpretations and future drilling areas, provide

NOT FOR DISTRIBUTION TO U.S. NEWSWIRE SERVICES OR FOR DISSEMINATION IN THE UNITED STATES.

To view the source version of this press release, please visit https://www.newsfilecorp.com/release/89648

Dieser Artikel stammt von Rohstoff-Welt.de Die URL für diesen Artikel lautet:

https://www.rohstoff-welt.de/news/388375--Benz-Mining~-PhotonAssay-of-2020-Core-Underway-in-Perth.html

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.

04.12.2025 Seite 17/17