

Benz Mining: PhotonAssay of 2020 Core Underway in Perth

07.07.2021 | [Newsfile](#)

HIGHLIGHTS

- Reject samples from the 2020 drilling campaign have arrived at MinAnalytical in Perth, Western Australia for analysis by PhotonAssay
- Samples had been integrated in the laboratory schedule ahead of delivery to allow for immediate start at reception and analysis has started
- Whole rock analysis to be conducted capturing visible gold, observed in core and potentially not reflected in standard fire assays
- Historical analysis from 2010/11 programs highlighted that fire assays under called grades by on average 34% compared with screen fire assays
- Analysis run in conjunction with large scale heterogeneity test quantifying the nature of the high-grade gold at the Eastmain deposit
- Understanding and quantifying the nature of high-grade gold mineralisation will improve future resource estimate and confidence

Toronto, July 7, 2021 - [Benz Mining Corp.](#) (TSXV: BZ) (ASX: BNZ) (the Company or Benz) is pleased to announce that a single shipment of over 8t of coarse rejects from its 2020 drilling campaign has been received by MinAnalytical's Perth laboratory from Quebec.

Coarse rejects are the leftover material from the processing of core samples during the assaying process. On average, coarse rejects represent over 80% of the core samples submitted to Actlabs in Quebec for standard fire assays in 2020 (fire assays with both AAS and gravimetric finish, only using a 50g subsample of the material submitted).

The industry standard fire assay method used in the 2020 drill program includes fine grinding and pulverisation of samples to a particle size of 75µm. Due to the malleable nature of gold, nuggets with a size over 75µm have a chance of being retained in the fraction of the sample that is not analysed.

Benz geologists have observed multiple occurrences of visible gold in the core from Eastmain. Visible gold usually indicates that gold particles are larger than the 75µm of the sieve used in the fire assay preparation.

CEO Xavier Braud Commented: "The numerous observations of visible gold in core from the Eastmain Project mean that we need to use an assay method best suited to high-grade gold. PhotonAssay will give us a much better estimation of true gold grade in our drill core as the sample method removes the bias created during the sample preparation in traditional assay methods. If this round of assays shows that fire assay analytical methods have underestimated grades, then we can legitimately ask ourselves about a potential underestimation of our current resource which is based on historical fire assay results."

The coarse rejects shipped to Australia have been crushed to a size of 2mm.

The whole lot of the samples will be assayed, providing a whole rock analysis, capturing all the gold present in each sample without the bias introduced by subsampling, fine grinding and sieving.

The expectation is that a method capturing the oversized gold fraction will return more accurate assays

better correlating grade and geological observations.

Figure 1: EM20-137, Fire Assay results: 1.5m at 2.8g/t Au from 519.5, 30 grains of visible gold observed (being re-assayed by PhotonAssay)

To view an enhanced version of this graphic, please visit:
https://orders.newsfilecorp.com/files/1818/89648_pic1.jpg

Figure 2: EM20-132 - Fire Assay Results - 3.0m at 13.7g/t Au from 531.8m, one grain of visible gold observed (being re-assayed by PhotonAssay)

To view an enhanced version of this graphic, please visit:
https://orders.newsfilecorp.com/files/1818/89648_b7095947f45009dd_004full.jpg

Screen fire assays (metallic screen) (SFA-Grav) vs. fire assays (FA-AAS) in 2010-11 drill results from the Eastmain Project

During the 2010 and 2011 drilling campaigns at Eastmain, observations of visible gold prompted the geological team to submit samples for both fire assays (FA-AAS) and screen fire assays (metallic screen) (SFA-Grav).

A total of 361 samples were submitted for analysis with 2 duplicate measurements conducted by FA-AAS and one by SFA-Grav. The average gold grade over the 361 samples by standard fire assay is 2.24g/t Au whilst metallic screen returned an average of 3.04g/t Au, an increase of 34% in the average measured grade.

The graph in Figure 3 shows a plot of the historical results by SFA-Grav versus results obtained by FA-AAS (average of the 2 duplicate results).

Figure 3: Assays by fire assays vs screen fire assays in 361 sets of duplicates from 2010 and 2011 drilling campaigns

To view an enhanced version of this graphic, please visit:
https://orders.newsfilecorp.com/files/1818/89648_picture1.jpg

Both metallic screen and standard fire assay methods use a subsample from the half core sample submitted to the laboratory.

- In the case of fire assays, the aliquot (the final sample physically used for analysis) is 50g.
- In the case of metallic screen FA, the aliquot used is 1kg.

Both fire and metallic screen fire assays involve some level of preparation of the sample.

- In the case of fire assays, the whole half core sample is crushed down to a maximum particle size of 2mm. Then a subsample of 250g is pulverized until 80% of the sample passes a 75µm mesh. The final aliquot is obtained by sampling 50g from the fraction finer than 75µm.

- In the case of screen fire assays, the whole half core sample is crushed for a set period of time. A 1kg subsample is collected and screened through a 106µm mesh. The coarse and fine fractions are assayed separately by fire assay and the final reported result is a weighted average of the coarse and fine fraction analysis.

Screen fire assays partly remove the sampling bias introduced by the small size of the subsample and the fine grinding to 75µm used in fire assays.

Benz has used both the standard 50g fire assay with AAS and gravimetric finish and, in 2021, has used metallic screen FA with gravimetric finish for mineralised samples and those with visible gold.

Benz is currently analysing core sample rejects from its 2020 drilling campaign by PhotonAssay, a technology using high energy x-ray fluorescence.

PhotonAssay technology should be an improvement on both analytical methods for the following reasons:

- 100% of rejects sampled (>80% of the core samples originally submitted) - larger sample
- No fine grinding - no further processing of the material than standard 2mm crush
- No screening bias
- No destruction of the sample - the samples can still be assayed by another method afterwards

Further details on PhotonAssay technology can be found here.
<https://www.chrysos.com.au/replacing-fire-assay>

The Eastmain Gold Project, situated on the Upper Eastmain Greenstone Belt in Quebec, Canada, currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold (Indicated: 236,500oz at 8.2gpt gold, Inferred: 139,300oz at 7.5gpt gold). The existing gold mineralization is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite in highly deformed and altered rocks making it amenable to detection using electromagnetic techniques. Multiple gold occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited but highly encouraging testing outside the existing resource area.

This press release was prepared under supervision and approved by Dr. Danielle Giovenazzo, P.Geo, acting as Benz's qualified person under National Instrument 43-101.

About Benz Mining Corp.

[Benz Mining Corp.](#) brings together an experienced team of geoscientists and finance professionals with a focused strategy to acquire and develop mineral projects with an emphasis on safe, low risk jurisdictions favourable to mining development. Benz is earning a 100% interest in the former producing high grade Eastmain gold mine, Ruby Hill West and Ruby Hill East projects in Quebec.

The Eastmain Gold Project is situated within the Upper Eastmain Greenstone Belt in Quebec, Canada and currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold. The existing gold mineralization is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite making it amenable to detection by electromagnetics. Several gold mineralization occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited testing outside the existing resource area.

On behalf of the Board of Directors of [Benz Mining Corp.](#)
Xavier Braud, CEO

For more information please contact:

Paul Fowler
Head of Corporate Development (Canada)
[Benz Mining Corp.](#)
Telephone: +1 416 356 8165
Email: info@benzmining.com

Xavier Braud
CEO, Head of Corporate Development (Aus)
[Benz Mining Corp.](#)
Telephone +61 423 237 659
Email: info@benzmining.com

Forward-Looking Information: Certain statements contained in this news release may constitute "forward-looking information" as such term is used in applicable Canadian securities laws. Forward-looking information is based on plans, expectations and estimates of management at the date the information is provided and is subject to certain factors and assumptions, including, that the Company's financial condition and development plans do not change as a result of unforeseen events and that the Company obtains regulatory approval. Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as set forth in the Company's continuous disclosure filings filed under the Company's profile at [www.sedar.com](#). The Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

Competent Person's Statements: The information in this report that relates to Exploration Results is based on and fairly represents information and supporting information compiled by Mr Xavier Braud, who is a member of the Australian Institute of Geoscientists (AIG membership ID:6963). Mr Braud is a consultant to the Company and has sufficient experience in the style of mineralization and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Braud holds securities in [Benz Mining Corp.](#) and consents to the inclusion of all technical statements based on his information in the form and context in which they appear.

The information in this announcement that relates to the Inferred Mineral Resource was first reported under the JORC Code by the Company in its prospectus released to the ASX on 21 December 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and confirms that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement

Appendix 1: Historical data (2010-11 assays data used in this release)

Table 1: Drillholes collar information

Hole_ID	Easting_X_Nad83Z18	Northing_Y_Nad83Z18	Elevation	TotDepth	Azimut_at_CLR	Dip_at_CLR
EM10-02 698873.9	5798667		483.912	444	224	-85.39
EM10-03 698822.8	5798639		484	387	246	-79.27
EM10-04 698868.9	5798671		483.87	423	257	-80.27
EM10-05 698835.5	5798569		484.636	330	223	-85.31

EM10-12694522.2	5801514	505	309	218	-43.43
EM10-13694522.2	5801514	505	342	220	-60.35
EM10-17698705.9	5798655	484.72	315	209	-80.14
EM10-18698943.1	5798733	483.905	480	205	-86.9
EM10-19698942.5	5798733	483.944	402	239	-68.48
EM10-22698986.7	5798759	484.389	450	238	-74.98
EM10-26699084.1	5798450	481.509	279	217	-59.69
EM10-28699082.5	5798341	480.931	249	213	-79.57
EM10-29699081.9	5798340	480.903	237	220	-53.81
EM10-30699138.9	5798265	486.53	246	199	-84.01
EM10-33699297.1	5798420	480.231	354	216	-75.79
EM10-34699296.9	5798419	480.174	366	227	-85.24
EM10-36699229.4	5798287	482.929	279	211	-76.4
EM10-37699205.7	5798177	485.568	216	217	-71.33
EM10-38699016.4	5798038	489.257	195	218	-56.09
EM10-42699425.9	5798261	481.801	351	210	-74.92
EM10-43699472.3	5798216	482.014	351	208	-80.7
EM10-46699961.3	5797734	487.645	330	209	-79.29
EM11-48698933.5	5798922	489	507	213	-62
EM11-49698933.5	5798922	488.9738	534	195	-84.6
EM11-50698952.9	5798918	488	543	208	-60
EM11-51698952.9	5798918	488	573	207	-53.1
EM11-52698952.9	5798918	488	528	207	-45.1
EM11-53698952.9	5798918	488	51	207	-43.4
EM11-54698931	5798930	489	516	211	-44.9
EM11-58699142.7	5798915	485	561	215	-71.5
EM11-59699225	5798037	492	204	215	-69.9
EM11-60699284	5798500	486	552	177	-83.4
EM11-61699346.4	5798519	483	522	203	-83.9
EM11-62699415.2	5798509	481	525	197	-78.5
EM11-63699556.1	5798429	480	507	213.75	-74
EM11-64699579	5798397	481	501	208	-73.4
EM11-65699619.1	5798346	481	498	212	-73.4
EM11-66699619.1	5798346	481	501	208	-78.8
EM11-67699512	5798177	483	393	196	-84.9
EM11-69700000.6	5797789	486	375	200	-84.5
EM11-70700025	5797831	486	411	196	-84.5
EM11-71700020.3	5797718	494	408	213	-70.2
EM11-72700102	5797662	498	363	212	-68
EM11-74700350	5797750	499	483	210	-75

Table 2: Assay data

Sample#	Hole ID	Gold (g/t) method Au-AA26 (fire assay, AAS Finish)	Gold (g/t) method Au-AA26 (fire assay, AAS F
C152757	EM10-030.24		0.25
C152759	EM10-037.09		6.94
C152760	EM10-0313.3		11
C152761	EM10-0311.55		10.35
C152762	EM10-031.31		1.34
C152763	EM10-031.68		1.85
C152764	EM10-030.01		0.01
C152765	EM10-031.21		1.14
C152766	EM10-030.01		0.01
C176144	EM10-020.31		0.41
C176145	EM10-023.05		2.78
C176146	EM10-022.27		2.07
C176147	EM10-020.48		0.55
C176148	EM10-020.49		0.41
C176268	EM10-040.04		0.04

C176269	EM10-04 2.29	1.63
C176270	EM10-04 24.3	21.9
C176273	EM10-04 0.86	0.41
C176276	EM10-04 0.4	0.31
C176278	EM10-04 5.2	5.29
C176280	EM10-04 2.41	2.57
C176281	EM10-04 0.89	0.69
C176282	EM10-04 0.96	0.95
C176283	EM10-04 1.37	1.26
C176284	EM10-04 0.29	0.28
C176417	EM10-05 0.42	0.42
C176418	EM10-05 1	1.19
C176419	EM10-05 0.1	0.09
C176423	EM10-05 0.21	0.17
C176424	EM10-05 1.71	1.87
C176426	EM10-05 0.03	0.01
C178201	EM10-12 0.09	0.06
C178202	EM10-12 0.96	0.86
C178203	EM10-12 1.24	0.98
C178204	EM10-12 1.1	1.22
C178205	EM10-12 0.15	0.12
C178206	EM10-12 0.11	0.1
C178207	EM10-12 0.24	0.27
C178208	EM10-12 1.09	0.55
C178209	EM10-12 0.53	0.45
C178221	EM10-12 0.11	0.11
C178222	EM10-12 6.75	7.82
C178223	EM10-12 0.02	0.04
C178238	EM10-13 0.02	0.02
C178239	EM10-13 10.1	10.75
C178240	EM10-13 0.03	0.04
C178257	EM10-13 0.01	0.005
C178258	EM10-13 5.57	6.08
C178259	EM10-13 0.18	0.18
C178263	EM10-13 0.005	0.01
C178264	EM10-13 6.79	6.09
C178265	EM10-13 0.13	0.08
C178267	EM10-13 0.01	0.01
C178268	EM10-13 3.63	3.66
C178269	EM10-13 0.96	0.98
C178273	EM10-13 0.01	0.01
C178274	EM10-13 2.39	2.95
C178276	EM10-13 0.02	0.02
C179567	EM10-17 0.51	0.51
C179568	EM10-17 9.38	9.98
C179569	EM10-17 0.06	0.06
C179682	EM10-18 0.04	0.04
C179683	EM10-18 1.09	1.09
C179684	EM10-18 0.04	0.04
C179766	EM10-19 0.56	0.55
C179767	EM10-19 2.35	2.56
C179768	EM10-19 3.14	3.76
C179769	EM10-19 7.36	8
C179770	EM10-19 2.24	2.43
C179771	EM10-19 0.79	0.71
C179772	EM10-19 11.65	10.6
C179773	EM10-19 1.56	1.85
C179774	EM10-19 0.49	0.64

C179776	EM10-194.13	4.29
C179777	EM10-190.35	0.12
C179778	EM10-190.03	0.05
C179779	EM10-190.01	0.06
C179780	EM10-193.49	4.4
C179781	EM10-190.03	0.02
G0779169	EM10-030.01	0.005
G0779397	EM10-330.01	0.01
G0779398	EM10-331.02	1.16
G0779399	EM10-334.22	4.32
G0779872	EM10-180.02	0.01
G0779873	EM10-181.03	0.37
G0779874	EM10-180.04	0.03
H875044	EM10-220.67	0.6
H875045	EM10-223.93	4.22
H875046	EM10-220.05	0.02
H875047	EM10-220.05	0.99
H875048	EM10-220.005	0.28
H875049	EM10-220.47	0.21
H875153	EM10-260.01	0.01
H875154	EM10-261.3	1.55
H875155	EM10-260.06	0.06
H875171	EM10-260.59	0.58
H875172	EM10-261.09	0.97
H875173	EM10-260.005	0.005
H875183	EM10-280.09	0.1
H875184	EM10-288.29	10.7
H875185	EM10-280.05	0.16
H875186	EM10-281.16	0.72
H875187	EM10-282.24	2.3
H875188	EM10-280.67	0.78
H875189	EM10-280.74	0.57
H875190	EM10-286.73	6.9
H875191	EM10-285.43	7.36
H875192	EM10-2813.35	12.35
H875193	EM10-280.75	0.84
H875194	EM10-288.25	7.92
H875195	EM10-2824.9	24.9
H875196	EM10-2817.85	16.9
H875197	EM10-2813.95	13.25
H875198	EM10-2812.95	12.5
H875199	EM10-2825.2	24.3
H875201	EM10-285.22	5.3
H875202	EM10-2815	13.8
H875203	EM10-282.28	2.49
H875204	EM10-280.2	0.14
H875215	EM10-300.02	0.02
H875216	EM10-303.19	2.74
H875217	EM10-300.01	0.02
H875234	EM10-3010	9.74
H875235	EM10-300.4	0.6
H875236	EM10-300.01	0.02
H875237	EM10-300.03	0.03
H875238	EM10-302.18	2.25
H875239	EM10-300.17	0.19
H875338	EM10-340.02	0.03
H875339	EM10-341.35	1.43
H875340	EM10-340.1	0.11

H875342	EM10-340.18	1.01
H875343	EM10-340.25	0.37
H875344	EM10-340.44	0.47
H875351	EM10-330.13	0.58
H875352	EM10-330.13	0.11
H875451	EM10-220.06	0.07
H875452	EM10-220.04	0.01
H875553	EM10-220.15	0.13
H875554	EM10-223.14	3.12
H875555	EM10-220.03	0.04
H875567	EM10-290.07	0.08
H875568	EM10-294.17	3.6
H875569	EM10-290.02	0.02
H875584	EM10-290.13	0.21
H875585	EM10-291.75	1.61
H875586	EM10-290.03	0.02
H875601	EM10-290.03	0.03
H875602	EM10-2930.3	29.3
H875603	EM10-290.4	0.76
H875604	EM10-290.38	0.3
H875704	EM10-380.11	0.09
H875705	EM10-3813.7	13
H875706	EM10-381.4	1.72
H875707	EM10-3817.75	17.45
H875708	EM10-385.57	5.7
H875709	EM10-383.12	4.56
H875710	EM10-3810.4	9.82
H875711	EM10-3814.3	12.6
H875712	EM10-380.16	0.16
H875713	EM10-380.02	0.05
H875714	EM10-381.15	1.05
H875715	EM10-380.02	0.01
H875874	EM10-430.26	0.21
H875876	EM10-434.81	4.79
H875877	EM10-430.52	0.7
H875878	EM10-430.89	0.73
H875879	EM10-430.06	0.08
H876160	EM10-370.04	0.07
H876161	EM10-371.37	1.28
H876162	EM10-372.78	2.82
H876163	EM10-371.99	2.11
H876164	EM10-370.01	0.02
H876242	EM10-420.39	0.35
H876243	EM10-422.03	2.3
H876244	EM10-422.21	2.08
H876245	EM10-421.68	1.76
H876246	EM10-420.1	0.1
H876335	EM10-460.11	0.1
H876336	EM10-466.21	6.24
H876337	EM10-460.22	0.21
H876367	EM10-120.01	0.01
H876368	EM10-122.31	2.41
H876369	EM10-120.01	0.02
H876399	EM10-130.03	0.03
H876401	EM10-131.43	1.48
H876402	EM10-130.08	0.07
H876486	EM10-360.01	0.01
H876487	EM10-3637.8	34.9

H876488	EM10-36 0.01	0.16
H876494	EM10-36 0.58	0.2
H876495	EM10-36 35.6	34.7
H876496	EM10-36 0.01	0.04
H877516	EM11-48 0.005	0.01
H877517	EM11-48 3.15	3.26
H877518	EM11-48 0.03	0.04
H877686	EM11-49 0.59	0.55
H877687	EM11-49 0.06	0.08
H877688	EM11-49 0.61	0.41
H877689	EM11-49 1.74	1.83
H877690	EM11-49 0.34	0.37
H877852	EM11-49 0.005	0.005
H877853	EM11-49 1.65	1.94
H877854	EM11-49 0.03	0.02
J423462	EM11-50 11.9	11.1
J423553	EM11-50 0.04	0.04
J423554	EM11-50 0.7	0.74
J423555	EM11-50 0.005	0.005
J423637	EM11-51 0.05	0.03
J423638	EM11-51 0.27	0.27
J423639	EM11-51 0.01	0.01
J423793	EM11-51 0.13	0.04
J423794	EM11-51 0.35	0.23
J423795	EM11-51 0.005	0.005
J423815	EM11-51 0.45	0.47
J423816	EM11-51 5.38	5.31
J423817	EM11-51 0.005	0.005
J423827	EM11-51 0.07	0.07
J423828	EM11-51 0.85	1.16
J423829	EM11-51 0.005	0.005
J423871	EM11-51 0.03	0.08
J423872	EM11-51 1.39	1.45
J423873	EM11-51 0.005	0.01
J425655	EM11-52 0.76	0.7
J425656	EM11-52 2.06	2.13
J425657	EM11-52 3.78	3.78
J425658	EM11-52 1.83	1.82
J425659	EM11-52 1.32	1.41
J425660	EM11-52 0.26	0.28
J425661	EM11-52 0.42	0.37
J425662	EM11-52 0.14	0.12
J425693	EM11-52 0.56	0.64
J425694	EM11-52 0.62	0.62
J425695	EM11-52 8.87	8.97
J425696	EM11-52 2.95	3.16
J425697	EM11-52 0.27	0.23
J425698	EM11-52 1.47	1.8
J425699	EM11-52 4.18	3.9
J425701	EM11-52 14.3	15.6
J425702	EM11-52 2.39	1.72
J425703	EM11-52 2.3	2.5
J425704	EM11-52 7.37	7.22
J425705	EM11-52 4.47	4.51
J425706	EM11-52 4.36	4.09
J425707	EM11-52 0.99	0.85
J425708	EM11-52 0.22	0.22
J425709	EM11-52 0.55	0.53

J425710	EM11-521.12	1.36
J425711	EM11-521.68	1.68
J425970	EM11-540.14	0.14
J425971	EM11-541.83	2.26
J425972	EM11-540.31	0.36
K561587	EM11-580.14	0.1
K561588	EM11-588.41	8.01
K561589	EM11-580.07	0.08
K561590	EM11-580.01	0.01
K561591	EM11-581.15	1.31
K561592	EM11-580.005	0.005
K561662	EM11-580.005	0.005
K561663	EM11-580.8	0.9
K561664	EM11-580.005	0.01
K561766	EM11-590.32	0.03
K561767	EM11-590.07	0.07
K561768	EM11-590.3	0.35
K561769	EM11-591.52	1.75
K561770	EM11-590.13	0.2
K561771	EM11-590.33	0.26
K561772	EM11-590.69	0.9
K561851	EM11-600.005	0.01
K561852	EM11-600.63	0.57
K561853	EM11-602.75	2.54
K561854	EM11-600.02	0.02
K563014	EM11-600.01	0.02
K563015	EM11-604.02	3.34
K563016	EM11-600.24	0.01
K563297	EM11-610.03	0.03
K563298	EM11-610.09	0.12
K563299	EM11-610.005	0.01
K563427	EM11-610.02	0.01
K563428	EM11-611.83	2.46
K563429	EM11-615.33	5.61
K563430	EM11-610.06	0.06
K563431	EM11-610.02	0.02
K563435	EM11-610.11	0.12
K563436	EM11-615.5	5.53
K563437	EM11-610.02	0.03
K563986	EM11-620.02	0.01
K563987	EM11-620.24	0.29
K563988	EM11-620.07	0.05
L758193	EM11-630.22	0.22
L758194	EM11-630.85	0.91
L758195	EM11-630.2	0.32
L758196	EM11-631.07	1.35
L758197	EM11-630.08	0.11
L758198	EM11-631.66	1.44
L758381	EM11-640.02	0.02
L758382	EM11-647.11	6.19
L758383	EM11-640.03	0.03
L758538	EM11-640.51	0.56
L758539	EM11-640.86	0.85
L758540	EM11-640.14	0.19
L758817	EM11-650.01	0.005
L758818	EM11-652.5	2.39
L758819	EM11-6515.5	14.55
L758820	EM11-656.85	6.24

L758821	EM11-65 0.79	0.93
L758822	EM11-65 1.73	1.57
L758823	EM11-65 1.24	1.03
L760023	EM11-66 0.83	0.61
L760024	EM11-66 0.13	0.17
L760026	EM11-66 1.08	0.88
L760027	EM11-66 0.48	0.81
L760028	EM11-66 1.63	1.65
L760029	EM11-66 6.63	4.96
L760030	EM11-66 0.33	0.6
L760031	EM11-66 0.19	0.25
L760032	EM11-66 0.57	0.37
L760033	EM11-66 1.22	1.06
L760034	EM11-66 1.15	0.84
L760117	EM11-67 0.12	0.01
L760118	EM11-67 1.49	1.89
L760119	EM11-67 2.04	1.97
L760120	EM11-67 1.06	1.44
L760121	EM11-67 0.25	0.23
L760230	EM11-67 0.13	0.16
L760231	EM11-67 1.1	0.88
L760232	EM11-67 0.02	0.02
L760633	EM11-69 0.01	0.01
L760634	EM11-69 3.45	3.79
L760635	EM11-69 0.005	0.005
L760647	EM11-69 0.02	0.02
L760648	EM11-69 1.51	1.21
L760649	EM11-69 0.25	0.26
L760914	EM11-70 0.01	0.01
L760915	EM11-70 3.96	4.32
L760916	EM11-70 0.03	0.03
L760919	EM11-70 0.91	2.26
L760920	EM11-70 0.03	0.03
L760921	EM11-70 0.005	0.005
L760987	EM11-71 0.005	0.005
L760988	EM11-71 0.34	0.27
L760989	EM11-71 0.23	0.24
L761086	EM11-71 0.53	0.53
L761087	EM11-71 0.91	1.35
L761088	EM11-71 0.09	0.05
L761095	EM11-71 0.005	0.005
L761096	EM11-71 1.37	1.3
L761097	EM11-71 0.05	0.06
L777131	EM11-72 0.005	0.005
L777132	EM11-72 0.85	0.89
L777133	EM11-72 0.03	0.01
L777472	EM11-74 1.73	0.01
L777473	EM11-74 3.3	2.45
L777474	EM11-74 0.11	0.13
L777521	EM11-74 0.01	0.01
L777522	EM11-74 0.43	0.42
L777523	EM11-74 0.32	0.36
L777524	EM11-74 8.46	9.47
L777526	EM11-74 0.09	0.06
L777611	EM11-50 0.005	0.005
L777612	EM11-50 0.005	0.005
Average	2.26	2.22

Appendix 2: JORC Tables

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation
Sampling techniques	<ul style="list-style-type: none"> ● Nature and quality of sampling (eg cut channels, random chip measurement tools appropriate to the minerals under investigation or handheld XRF instruments, etc). These examples should include the nature and quality of sampling. ● Include reference to measures taken to ensure sample representativeness and any measurement tools or systems used. ● Aspects of the determination of mineralisation that are Material ● In cases where 'industry standard' work has been done this will be acceptable provided it is clearly described. For example, if reverse circulation drilling was used to obtain 1 m samples from which 0.5 m was discarded (eg 'tailings' or 'charge for fire assay'). In other cases more explanation may be required. For example, if samples were taken from gold that has inherent sampling problems. Unusual commodities (eg gold in sulphide nodules) may warrant disclosure of detailed information.
Drilling techniques	<ul style="list-style-type: none"> ● Drill type (eg core, reverse circulation, open-hole hammer, rock auger, air core, etc) and details (eg core diameter, triple or standard tube, depth of penetration, whether cored or rotary, whether reverse or forward circulation, whether air or water, etc).
Drill sample recovery	<ul style="list-style-type: none"> ● Method of recording and assessing core and chip sample recovery and measures taken to maximise sample recovery and ensure representative samples. ● Whether a relationship exists between sample recovery and sample size and whether any loss/gain of fine/coarse material occurred due to preferential loss/gain of fine/coarse material.
Logging	<ul style="list-style-type: none"> ● Whether core and chip samples have been geologically and geographically logged in sufficient detail to support appropriate Mineral Resource estimation, mining studies and environmental impact assessments. ● Whether logging is qualitative or quantitative in nature. Core logging may be considered quantitative if measurements are taken and recorded for one or more parameters such as mineral type, mineral size, mineral orientation, mineral association and mineral chemistry. ● The total length and percentage of the relevant intersections logged.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> ● If core, whether cut or sawn and whether quarter, half or all cut. ● If non-core, whether riffled, tube sampled, rotary split, etc and whether拒采. ● For all sample types, the nature, quality and appropriateness of the sample preparation technique. ● Quality control procedures adopted for all sub-sampling stages. ● Measures taken to ensure that the sampling is representative. For instance results for field duplicate/second-half sampling. ● Whether sample sizes are appropriate to the grain size of the material being sampled.

Criteria	JORC Code explanation
Quality of assay data and laboratory tests	<ul style="list-style-type: none">● The nature, quality and appropriateness of the assaying and the technique is considered partial or total.● For geophysical tools, spectrometers, handheld XRF instruments, etc, the method of determining the analysis including instrument make and model, operating parameters, etc.● Nature of quality control procedures adopted (eg standards, blanks, duplicates, external checks) and whether acceptable levels of accuracy (ie lack of bias) are established.
Verification of sampling and assaying	<ul style="list-style-type: none">● The verification of significant intersections by either independent or duplicate means.● The use of twinned holes.● Documentation of primary data, data entry procedures, data checks and any adjustment to assay data.
Location of data points	<ul style="list-style-type: none">● Accuracy and quality of surveys used to locate drill holes (control workings and other locations used in Mineral Resource estimation).● Specification of the grid system used.● Quality and adequacy of topographic control.
Data spacing and distribution	<ul style="list-style-type: none">● Data spacing for reporting of Exploration Results.● Whether the data spacing and distribution is sufficient to establish the continuity appropriate for the Mineral Resource and Ore Reserve classifications applied.● Whether sample compositing has been applied.
Orientation of data in relation to geological structure	<ul style="list-style-type: none">● Whether the orientation of sampling achieves unbiased sampling, which this is known, considering the deposit type.● If the relationship between the drilling orientation and the orientation of geological structures is considered to have introduced a sampling bias, this should be declared.
Sample security	<ul style="list-style-type: none">● The measures taken to ensure sample security.
Audits or reviews	<ul style="list-style-type: none">● The results of any audits or reviews of sampling techniques and data used in the Mineral Resource estimate.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Mineral tenement and land tenure status

- Type, reference name/number, location and ownership of the mineral tenement and land tenure, including any parties such as joint ventures, partnerships, overlying landholders, or other interests in the area, including wilderness or national park and environmental sensitivities.
- The security of the tenure held at the time of reporting, including any relevant lease, permit or licence to operate in the area.

Criteria

JORC Code explanation

Exploration done by other parties

- Acknowledgment and appraisal of exploration by other parties

Geology

- Deposit type, geological setting and style of mineralization

Criteria

JORC Code explanation

Drill hole Information

- A summary of all information material to the understanding of the following information for all Material drill holes:
 - easting and northing of the drill hole collar
 - elevation or RL (Reduced Level - elevation)
 - dip and azimuth of the hole
 - down hole length and interception depth
 - hole length.
- If the exclusion of this information is justified on the basis that the exclusion does not detract from the understanding, explain why this is the case.

Data aggregation methods

- In reporting Exploration Results, weighting average grade and truncations (eg cutting of high grades) and cut-off grade.
- Where aggregate intercepts incorporate short lengths of high grade results, the procedure used for such aggregations should be shown in detail.
- The assumptions used for any reporting of meta

Relationship between mineralisation widths and intercept lengths

- These relationships are particularly important in reporting Exploration Results.
- If the geometry of the mineralisation with respect to the orientation of the drill holes is such that the true width of the mineralisation is not known, this should be stated.
- If it is not known and only the down hole length is reported, the effect (eg 'down hole length, true width not known' should be stated).

Diagrams

- Appropriate maps and sections (with scales) and tables should be presented to illustrate the significant discovery being reported. These should include the collar locations and appropriate sectional views.

Balanced reporting

- Where comprehensive reporting of all Exploration Results is not practicable, both low and high grades and/or widths should be reported for each class of Mineralisation.

Other substantive exploration data

- Other exploration data, if meaningful and material, should be reported in a manner that is likely to assist in understanding the geological, geophysical survey results, method of treatment, metallurgical test results, hydrogeological characteristics, potential deleterious or contaminating factors, and other characteristics of the deposit.

Criteria

JORC Code explanation

Further work

- The nature and scale of planned further work (e.g. large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible interpretations and future drilling areas, provide

NOT FOR DISTRIBUTION TO U.S. NEWSPAPER SERVICES OR FOR DISSEMINATION IN THE UNITED STATES.

To view the source version of this press release, please visit <https://www.newsfilecorp.com/release/89648>

Dieser Artikel stammt von [Rohstoff-Welt.de](https://www.rohstoff-welt.de)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/388375--Benz-Mining--PhotonAssay-of-2020-Core-Underway-in-Perth.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinien](#).