

# Newcrest Mining Limited - Exploration Update

## 10 June 2021

10.06.2021 | [Newsfile](#)

### Highlights

- At Red Chris, drilling continues to expand the higher grade mineralisation intersected at East Ridge and in the Main Zone:
  - At East Ridge, the new discovery adjacent to the East Zone, drilling continues to expand the footprint of the higher grade mineralisation with RC688 returning 344m @ 0.70g/t Au & 0.75% Cu from 776m, incl. 170m @ 1.1g/t Au & 1.1% Cu from 892m. This hole is 100m east of the discovery hole RC678 (previously reported).
  - East Ridge is located 300m east of East Zone and outside of Newcrest's Red Chris Mineral Resource Estimate. Drilling to define the extent of the higher grade mineralisation is ongoing.
  - In the Main Zone, drilling has intersected high grade mineralisation with RC683 returning 300m @ 0.41g/t Au & 0.51% Cu from 260m, incl. 114m @ 0.67g/t Au & 0.85% Cu from 390m, incl. 22m @ 1.1g/t Au & 1.4% Cu from 464m. This hole is 100m east of RC679 (previously reported).
  - Main Zone has the potential for further higher grade mineralisation beneath and to the south west of the open pit.
- At Havieron, growth drilling continues to return significant high grade extensions to the South East Crescent zone below the current Inferred Mineral Resource:
  - HAD133 returned 85m @ 11g/t Au & 0.29% Cu from 1345m, including 13m @ 32g/t Au & 0.46% Cu from 1363m, and including 14.5m @ 32g/t Au & 0.33% Cu from 1396.5m.
  - The high grade Crescent zone remains open at depth.

Melbourne, June 9, 2021 - [Newcrest Mining Ltd.](#) (ASX: NCM) (TSX: NCM) Newcrest Managing Director and Chief Executive Officer, Sandeep Biswas, said, "Our extensive growth drilling program has delivered several new exciting high grade intercepts at Havieron, including 85m @ 11g/t Au and 0.29% Cu. These results highlight the potential for significant high grade depth extension of the South East Crescent zone. We are also excited by our continued exploration success at Red Chris, with drill results from East Ridge and Main Zone expanding the footprint of the higher grade mineralisation. East Ridge is our new discovery that is located outside of our initial Red Chris Mineral Resource estimate with drill results to date supporting the potential for resource growth at Red Chris over time. Drill results in the Main Zone have confirmed the potential for higher grade mineralisation which could support additional mining fronts beneath and to the south west of the open pit."

Red Chris - Significant results since the March 2021 Quarterly Exploration Report<sup>(1)</sup>:

- RC683:
  - 300m @ 0.41g/t Au & 0.51% Cu from 260m
  - including 114m @ 0.67g/t Au & 0.85% Cu from 390m
  - including 22m @ 1.1g/t Au & 1.4% Cu from 464m
- RC684:
  - 252m<sup>^</sup> @ 0.46g/t Au & 0.53% Cu from 814m
  - including 98m<sup>^</sup> @ 0.85g/t Au & 0.86% Cu from 962m
  - including 16m<sup>^^</sup> @ 1.2g/t Au & 1.2% Cu from 970m
- RC688:
  - 344m @ 0.70g/t Au & 0.75% Cu from 776m
  - including 170m @ 1.1g/t Au & 1.1% Cu from 892m
  - including 78m @ 1.1g/t Au & 1.3% Cu from 894m

Havieron - Significant growth drilling results since the March 2021 Quarterly Exploration Report<sup>(2)</sup>:

- HAD086W1
  - 99.7m @ 2.5g/t Au & 0.85% Cu from 1,308m
  - including 50.4m @ 4.3g/t Au & 1.6% Cu from 1,313.6m

- HAD133

- 85m @ 11g/t Au & 0.29% Cu from 1,345m
- including 13m @ 32g/t Au & 0.46% Cu from 1,363m
- including 14.5m @ 32g/t Au & 0.33% Cu from 1,396.5m

Red Chris, British Columbia, Canada<sup>(2)</sup>

Red Chris is a joint venture between Newcrest (70%) and [Imperial Metals Corp.](#) (30%). Newcrest acquired its interest in, and operatorship of, Red Chris on 15 August 2019.

The Brownfields Exploration program is focused on the discovery of additional zones of higher grade mineralisation within the Red Chris porphyry corridor including targets outside of Newcrest's Mineral Resource estimate. During the period, there were up to eight diamond drill rigs in operation. A further 15,342m of drilling has been completed from 11 drill holes, with all drill holes intersecting mineralisation (except two which were dedicated geotechnical holes). This contributed to a total of 136,631m of drilling from 111 drill holes since Newcrest acquired its interest in the joint venture.

At East Ridge, located adjacent to the East Zone, Newcrest has discovered a new zone of higher grade mineralisation, with previously reported hole RC678<sup>^^</sup> returning 198m @ 0.89g/t Au & 0.83% Cu from 800m, including 76m @ 1.8g/t Au and 1.5% Cu from 908m. The style of mineralisation and grade tenor is similar to that seen in the high grade pods from the East Zone.

Final results from follow-up drill hole RC684 drilled 100m down dip of RC678 returned 252m<sup>^</sup> @ 0.46g/t Au & 0.53% Cu from 814m, including 98m<sup>^</sup> @ 0.85g/t Au & 0.86% Cu from 962m. This hole demonstrates the continuity of the East Ridge zone over 100m vertically.

Results from follow-up drill hole RC688 drilled 100m east of RC678 returned 344m @ 0.70g/t Au & 0.75% Cu from 776m including 170m @ 1.1g/t Au & 1.1% Cu from 892m. This hole demonstrates the continuity of the East Ridge zone over 100m horizontally.

East Ridge is located 300m east of East Zone and outside of Newcrest's Red Chris Mineral Resource estimate, and it supports the potential for resource growth over time. Mineralisation is open and extends the eastern side of the porphyry corridor as shown in Figures 1 and 2. Follow-up drilling to further define the extent and continuity of this high grade mineralisation continues.

In the Main Zone, drilling has confirmed the potential for further higher grade mineralisation which could support additional mining fronts, beneath and to the south west of the open pit. Results from RC679<sup>^^</sup> (previously reported), which followed up historic results south west of the Main Zone pit, returned 456m<sup>^^</sup> @ 0.37g/t Au & 0.42% Cu from 418m, including 98m<sup>^^</sup> @ 0.71g/t Au & 1.0% Cu from 440m. Results from follow-up drill hole RC683 drilled 100m east of RC679 returned 300m @ 0.41g/t Au & 0.51% Cu from 260m, including 114m @ 0.67g/t Au & 0.85% Cu from 390m. This hole demonstrates the continuity of the higher grade mineralisation over 100m horizontally. The mineralisation is located within Newcrest's Mineral Resource estimate. Drilling to define the extent and continuity of this high grade mineralisation is planned.

Approximately 50,000m of growth-related drilling is planned this calendar year with the increase to eight drill rigs in April 2021. Further drilling of the East Ridge is underway to define the extent of the mineralisation. Further targets along the porphyry corridor and neighbouring GJ property have been identified with the potential to conduct drilling to test these targets in the future.

Refer to Appendix 1 for additional information, and Drillhole data table for all results reported during the period.

Figure 1. Schematic plan view map of the Red Chris porphyry corridor spanning East Ridge, East Zone, Main Zone and Gully Zone showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases). 1 g/t AuEq and 2 g/t AuEq shell projections generated from a Leapfrog model. Gold equivalent (AuEq) grade calculated using a copper conversion factor of 1.67 ([gold grade (g/t)] + [copper grade (%)] x

1.67]), using US\$1,400/oz Au, US\$3.40/lb Cu and 100% recovery.

To view an enhanced version of Figure 1, please visit:  
[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_003full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_003full.jpg)

Figure 2. Long section view map of the Red Chris porphyry corridor showing drill hole locations and gold distribution.

To view an enhanced version of Figure 2, please visit:  
[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_004full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_004full.jpg)

Havieron Project, Western Australia<sup>3</sup>

The Havieron Project is operated by Newcrest under a Joint Venture Agreement with Greatland Gold. As announced on 30 November 2020, Newcrest has now met the Stage 3 expenditure requirement (US\$45 million) and is entitled to earn an additional 20% joint venture interest, resulting in an overall joint venture interest of 60% (Greatland Gold 40%). Newcrest can earn up to a 70% joint venture interest through total expenditure of US\$65 million and the completion of a series of exploration and development milestones (including the delivery of a Pre-Feasibility Study) in a four-stage farm-in over a six year period that commenced in May 2019. Newcrest may acquire an additional 5% interest at the end of the farm-in period at fair market value. The Joint Venture Agreement includes tolling principles reflecting the intention of the parties that, subject to a successful exploration program, Feasibility Study and a positive decision to mine, the resulting joint venture mineralised material will be processed at Telfer.

The Havieron Project is centred on a deep magnetic anomaly located 45km east of Telfer in the Paterson Province. The deposit is overlain by more than 420m of post mineral Permian cover. Newcrest commenced drilling in May 2019. Drilling activities from seven drill holes resulted in 5,757m of drilling completed since 31 March 2021, with all drill holes intersecting mineralisation. A total of 164,420m of drilling from 190 drill holes has been completed since Newcrest commenced exploration activity.

At the South East Crescent, growth drilling to expand the resource has commenced with two drill holes HAD086W1 and HAD133 extending the high grade mineralisation ~80m below the base of the Inferred Mineral Resource. These intercepts are also below previously reported hole HAD065W2<sup>2</sup> (120.7m @ 9.3 g/t Au & 0.18 % Cu from 1,349.3m, including 26.6m @ 34 g/t Au & 0.23 % Cu from 1,384.4m) and highlights significant high grade depth extension of the South East Crescent zone. Drilling continues to define the extent of the high grade South East Crescent zone.

Results from HAD086W1 and HAD133 include:

- HAD086W1
  - 99.7m @ 2.5g/t Au & 0.85% Cu from 1,308m
  - including 50.4m @ 4.3g/t Au & 1.6% Cu from 1,313.6m
- HAD133
  - 85m @ 11g/t Au & 0.29% Cu from 1,345m
  - including 13m @ 32g/t Au & 0.46% Cu from 1,363m
  - including 14.5m @ 32g/t Au & 0.33% Cu from 1,396.5m

HAD097W3 and HAD136 returned Crescent intercepts within the current Inferred Mineral Resource footprint. These holes were designed to target depth extensions in the breccia mineralisation. They also show good alignment with modelled grade and thickness within the South East Crescent zone which further supports the continuity of high grade.

Results include:

- HAD097W3
  - 47.8m @ 2.3g/t Au & 0.28% Cu from 620.2m
  - including 28.3m @ 3.8g/t Au & 0.45% Cu from 639.7m
- HAD136
  - 55.2m @ 2.5g/t Au & 0.65% Cu from 501m
  - including 24.5m @ 5.4g/t Au & 0.95% Cu from 506.8m

At the Northern Breccia results from an additional three growth holes identified mineralisation outside of the Inferred Mineral Resource footprint. These results support extensions to breccia mineralisation in the north west of the system and further highlights the potential for resource extensions outside of the South East Crescent zone.

Results include:

- HAD089W1
  - 81.3m @ 1.2g/t Au & 0.04% Cu from 1,009.7m.

Currently, all drill rigs are operational on the growth drilling program with a focus on the South East Crescent depth extensions below 4,200mRL, the north west extensions of the Northern Breccia Zone and higher grade crescent-like mineralised zones. The intent of this drilling is to support the potential expansion of the existing Inferred Mineral Resource estimate. Drill testing and interpretation of the geological and mineralisation controls of the Eastern Breccia Zone is ongoing.

Further targets outside of Havieron, but within the joint venture area with Greatland Gold, have been identified with the potential to conduct drilling to test these targets in the future.

Refer to Appendix 2 for additional information, and Drillhole data table for all results reported during the period.

Figure 3. 3D Plan view schematic showing the spatial association of the South East Crescent + Breccia, North West Crescent, Northern Breccia and Eastern Breccia targets.

To view an enhanced version of Figure 3, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_005full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_005full.jpg)

Figure 4. Plan view schematic of a horizontal slice at 4700mRL through the Crescent Sulphide Zone and Breccia-hosted Zones, showing the extents of the 0.5 and 1.0 g/t Au Leapfrog™ grade shells with highlighted newly reported intercepts for this period. Also shown is the Eastern Breccia, Northern Breccia and north-west extensions of known mineralisation outlines projected to the 4700mRL section - drilling is ongoing to confirm the extent of these zones.

To view an enhanced version of Figure 4, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_006full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_006full.jpg)

Wilki Project, Western Australia

The Wilki Project covers a strategic landholding of ~2,200km<sup>2</sup> surrounding the Telfer operation and is also in close proximity to the Havieron Project. Newcrest entered into this exploration farm-in and joint venture agreement with Antipa Minerals Limited on 11 March 2020.

During the period, Newcrest participated in Antipa's share placements to maintain its 9.9% shareholding.

Exploration activity during the period included the re-interpretation and validation of anomalies generated from the previously reported Airborne Electromagnetic Survey (AEM) completed in CY20. Prioritisation of

targets for the CY21 drill program has been completed utilising the AEM anomalies and other datasets including magnetics and geochemistry.

It is anticipated that the field program for the CY21 field season including drill testing will commence in June 2021.

#### Juri Joint Venture, Western Australia

On 30 November 2020, Newcrest announced its entry into the Juri Joint Venture which is a farm-in and joint venture agreement with Greatland Gold, with respect to its Black Hills and Paterson Range East projects, located within the Paterson Province approximately 50km from the Telfer operation. The joint venture covers an area of approximately 248km<sup>2</sup>.

Under the terms of the agreement, Newcrest has been granted an initial 25% joint venture interest with the potential to earn up to a 75% joint venture interest through total expenditure of A\$20 million over a two stage earn-in, across a five year period. Greatland Gold will manage the Juri Joint Venture until the end of calendar year 2021, after which Newcrest has the right to be appointed as Manager.

Exploration activities have commenced with an initial program designed to drill test the Goliath, Outamind and Los Diablos targets in the Paterson Range East area. An initial scout drill program has been completed at the Goliath target with assay results pending. Subsequent work programs, including drilling, will also focus on the Parlay target within the Black Hills Project.

#### Tennant East, Northern Territory

Newcrest is the holder of six granted titles as well as seven application areas in the recently recognised Tennant East domain. Drill testing on the initial two target areas of Lantern and Sabretooth commenced in late April 2021.

#### Nevada, USA

Newcrest recently entered into an option and earn-in agreement with [Discovery Harbour Resources Corp.](#) on their Fortuity 89 property located in the Great Basin, Nevada. Fortuity 89 is characterised by limited outcrop in a large gravel covered plain. The limited outcrop is strongly altered, and other indications are consistent with the area having potential for epithermal gold mineralisation. On ground exploration work has commenced with target generation activities including mapping, sampling and geophysical surveys underway.

#### GJ Project, British Columbia, Canada

At the GJ Project, which is part of the Red Chris joint venture between Newcrest (70%) and [Imperial Metals Corp.](#) (30%), Newcrest is using its strong exploration expertise, to test the depth potential of the Donnelly Zone, part of a 10km porphyry corridor (Groat Stock). An initial program of two holes for 2,500m is planned to commence in the December 2021 half.

#### Appendix 1

##### Red Chris (70% Newcrest): JORC Table 1 Section 1: Sampling Techniques and Data

| Criteria            | Commentary                                                                                                                                                     |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques | Core samples are obtained from core drilling. HQ and NQ diameter 6m run. Core was cut using an automatic core-cutter and half core sequences were not sampled. |

|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                       | Commentary<br>Core drilling was advanced with HQ3, HQ, NQ3 and NQ diameter                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Drilling techniques                            | Core from inclined drill holes are oriented on 3, 4.5m or 6m runs (Reflex ACTIII). At the end of each run, the bottom of hole position transferred to the whole drill core run length with a bottom of hole marker. Core recovery is systematically recorded from the commencement of each run against driller's depth blocks in each core tray with data recorded in the acQuire database. This provided the depth, interval of core recovered, and interval of core recovered.                   |
| Drill sample recovery                          | Core recoveries were typically 100%, with isolated zones of lower recovery. Geological logging recorded qualitative descriptions of lithology, alteration, structure (for all core drilled -15,342m in 11 holes- all holes intersected) and geotechnical holes, including orientation of key geological features.                                                                                                                                                                                  |
| Logging                                        | Geotechnical measurements were recorded including Rock Quality Index, solid core recovery and qualitative rock strength measurements. Magnetic susceptibility measurements were recorded every metre.                                                                                                                                                                                                                                                                                              |
|                                                | All geological and geotechnical logging was conducted at the Red Chris Mine.                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                | Digital data logging was captured, validated and stored in an acQuire database.                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                | All drill cores were photographed, prior to cutting and/or sampling to document the core. Sampling, sample preparation and quality control protocols are conducted on all cores sampled.                                                                                                                                                                                                                                                                                                           |
|                                                | Core was cut and sampled at the Red Chris Mine core processing facility in plastic bags together with pre-numbered sample tags and grouped by sample number for transport to the Bureau Veritas Commodities Canada Ltd Laboratory. Sample weights typically varied from 5 to 10kg. Samples were cut to obtain a representative sample of the core and to determine the style of mineralisation. Drill core samples were freighted by road to the Bureau Veritas Commodities Canada Ltd Laboratory. |
| Sub-sampling techniques and sample preparation | Sample preparation was conducted at the independent ISO 9001 certified Bureau Veritas Commodities Canada Ltd Laboratory, Vancouver (Bureau Veritas). Samples were crushed to 95% passing 4.75 mm, and the split to obtain up to 1kg of sample (LM2) to produce a pulped product with the minimum standard of 95%.                                                                                                                                                                                  |
|                                                | Duplicate samples were collected from crush and pulp samples at an acceptable level of variability for the material sampled and style of mineralisation.                                                                                                                                                                                                                                                                                                                                           |
|                                                | Periodic size checks (1:20) for crush and pulp samples and sample numbers were recorded in the acQuire database.                                                                                                                                                                                                                                                                                                                                                                                   |

|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                   | <p><b>Commentary</b></p> <p>Assaying of drill core samples was conducted at Bureau Veritas. Assays were conducted on 100g of sample using a 4-acid digestion followed by ICP-AES/ICP-MS determination. Gold was determined by 50g fire assay with ICP-ES finish (method FA350). Copper, zinc, lead and tin were determined by ICP-ES finish (method FA350). Cobalt was determined by atomic absorption (method Leco (method TC000) and mercury using aqua regia digestion followed by atomic absorption (method AQ200).</p> <p>Sampling and assaying quality control procedures consisted of including reference materials (CRMs), coarse residue and pulp duplicates with each batch (at least one of each).</p> <p>Assays of quality control samples were compared with reference standards and results were verified as acceptable prior to use of data from analysed batches.</p> <p>Laboratory quality control data, including laboratory standards, blank and duplicate samples, results are captured in acQuire database and assessed for accuracy and precision.</p> <p>Due to the limited extent of the drilling program to date, extended core cutting was not undertaken, whereby pulped samples will be submitted to anumping laboratory for analysis and extensive re-submission programs.</p> <p>Analysis of the available quality control sample assay results indicates that accuracy and precision has been achieved and the database contains no anomalous data that has been manipulated.</p> <p>The assaying techniques and quality control protocols used are considered to be appropriate and used for reporting exploration drilling results.</p> <p>Sampling intervals defined by the geologist are electronically assigned to the core cutting. Corresponding sample numbers matching pre-labelled sample tubes are assigned to each interval.</p> <p>All sampling and assay information were stored in a secure acQuire database.</p> <p>Electronically generated sample submission forms providing the sample number and assay value are sent to the laboratory with each submission to the laboratory. Assay results from the laboratory are loaded directly into the acQuire database.</p> <p>Assessment of reported significant assay intervals was verified by assessment of high resolution core photography. The verification of significant intervals was completed by company personnel and the Competent Person/Qualified Person.</p> <p>No adjustments are made to assay data, and no twinned holes have been adjusted for mineralisation at various angles.</p> <p>There are no currently known drilling, sampling, recovery, or other factors that would affect the accuracy or reliability of the data.</p> <p>Drill collar locations were surveyed using a RTK GPS with GNSS receiver.</p> <p>Drill rig alignment was attained using an electronic azimuth aligner. A total station Downhole survey was collected at 9 to 30m intervals of the drill hole (Reflex EZ-SHOT). At the end of hole, all holes have been surveyed using a total station (Reflex EZ-GYRO).</p> <p>Topographic control is established from PhotoSat topographic data. The terrain topography is generally low relief to flat, with an average elevation of 1,000m. The terrain contains several gullies.</p> <p>All collar coordinates are provided in the North American Datum (NAD83). The drill hole spacing ranges from 100 - 200m in lateral extent with an area of 1.5km<sup>2</sup> at the East Zone, 1.5km<sup>2</sup> at the Main Zone and 1.5km<sup>2</sup> at the West Zone.</p> <p>No sample compositing is applied to samples.</p> |
| Quality of assay data and laboratory tests |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Verification of sampling and assaying      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Location of data points                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Data spacing and distribution              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Orientation of data in relation to geological structure | <p>Drilling of reported drill holes RC676, RC683, RC684, RC686, RC687 to the intrusive complex. The intrusive complex has an east-northeast to the north-northwest orientation.</p> <p>Drill holes exploring the extents of the East Ridge, East Zone, Main Zone and West Zone. Drill holes intersected moderately dipping volcanic and sedimentary units cut steeply dipping mineralised zones with an east-northeast orientation. Newcrest drill holes.</p> <p>The security of samples is controlled by tracking samples from drill rig to the Red Chris Mine core processing facility.</p>                                                                             |
| Sample security                                         | <p>Drill core was delivered from the drill rig to the Red Chris Mine core processing facility. Core samples are collected for geotechnical logging, high resolution core photography and cutting. Samples are sent to the Red Chris core processing facility.</p> <p>Samples were freighted in sealed bags with security tags by road to Newcrest representatives.</p> <p>Sample numbers are generated from pre-labelled sample tags. All samples are placed in numbered plastic bags. Sample tags are inserted into prenumbered plastic bags.</p> <p>Verification of sample numbers and identification is conducted by the sample receipt advice issued to Newcrest.</p> |
| Audits or reviews                                       | <p>Details of all sample movement are recorded in a database table. Details of analytical suite requested are recorded with the dispatch of sample. Any discrepancies logged at the receipt of samples into the laboratory.</p> <p>Due to the limited duration of the program, no external audits or reviews are conducted.</p> <p>Internal verification and audit of Newcrest exploration procedures are conducted.</p>                                                                                                                                                                                                                                                  |
| Section 2: Reporting of Exploration Results             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Criteria                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mineral tenement and land tenure status                 | <p>Red Chris comprises 77 mineral tenures including five mineral subsidiaries of Newcrest Mining Limited (70%) and <a href="#">Imperial Metals Corp.</a> (30%). <a href="#">Imperial Metals Corp.</a> is the operator of Red Chris.</p> <p>Newcrest Red Chris Mining Limited and the Tahltan Nation, the Canadian Government, the Tahltan Band and Iskut First Nation, signed the Co-Management Agreement (IBCA) covering Red Chris.</p> <p>All obligations with respect to legislative requirements are in place and standing.</p>                                                                                                                                       |
| Exploration done by other parties                       | <p>Conwest Exploration Limited, Great Plains Development Corporation, Texasgulf Canada Ltd. (formerly Ecstall Mining Limited) and Stikine Corporation conducted exploration in the areas between 2007 and 2012.</p> <p><a href="#">Imperial Metals Corp.</a> acquired the project in 2007 and developed it between 2007 and 2012.</p> <p>The Red Chris Project is located in the Stikine terrane, approximately 100 km northeast of Hazelton, British Columbia, Canada, in the town of Dease Lake.</p>                                                                                                                                                                    |
| Geology                                                 | <p>Late Triassic sedimentary and volcanic rocks of the Stikine terrane. Jurassic 204-198 Ma diorite to quartz monzonite plutons.</p> <p>Gold and copper mineralisation at Red Chris consists of porphyry-style mineralisation. Mineralisation is hosted in the plutons. The main mineral assemblage contains well developed pyrite, quartz, as vein and breccia infill, and disseminations. The main mineral assemblage is potassium feldspar-magnetite wall rock alteration.</p>                                                                                                                                                                                         |
| Drill hole information                                  | As provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Data aggregation methods                                         | Significant assay intercepts are reported as (A) length or equal to 20m, with less than 10m of consecutive intervals exceeding 0.5g/t Au for greater than or equal to 10m, (C) length-weighted averages exceeding 1g/t Au for greater than or equal to 10m, with less than 10m of consecutive internal dilution; (D) length-weighted averages with less than 10m of consecutive internal dilution; and (E) greater than or equal to 10m, with less than 10m of consecutive intercept calculations. |
| Relationship between mineralisation widths and intercept lengths | Significant assay intervals reported represent apparent widths to confirm the geological model and true width of significant intercepts.                                                                                                                                                                                                                                                                                                                                                           |
| Diagrams                                                         | As provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Balanced reporting                                               | Significant assay intervals reported represent apparent widths to confirm the geological model and true width of significant intercepts.                                                                                                                                                                                                                                                                                                                                                           |
| Other substantive exploration data                               | Earlier reporting of exploration programs conducted by Newcrest has been reported. Exploration drilling programs are ongoing and will be reported in subsequent Newcrest releases.                                                                                                                                                                                                                                                                                                                 |
| Further work                                                     | Nil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Drillhole data <sup>(1)</sup>                                    | Further drilling is planned to define the extents of the mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                           |

## Red Chris Project, British Columbia, Canada

Reporting Criteria: Intercepts reported are downhole drill width (not true width) Au >0.1ppm (0.1g/t Au) and minimum 20m downhole width with maximum consecutive internal dilution of 10m. Also highlighted are high grade intervals of Au >0.5ppm (0.5g/t Au), Au >1ppm (1g/t Au), Au >5ppm (5g/t Au), Au >10ppm (10g/t Au) and minimum 10m downhole width with maximum consecutive internal dilution of 10m. Gold grades are reported to two significant figures. Samples are from core drilling which is HQ or NQ in diameter. Core is photographed and logged by the geology team before being cut. Half core HQ and NQ samples are prepared for assay and the remaining material is retained in the core farm for future reference. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Total depth (end of hole) is rounded to one decimal place for reporting purposes.

| Hole ID | Hole Type | Easting (m) | Northing (m) | RL (m) | Depth (m) | Total Azimuth (GRID) | Dip        | From (m) | To (m)            | Interval (m)      | Au (ppm) | Cu (pct) | Cut off |
|---------|-----------|-------------|--------------|--------|-----------|----------------------|------------|----------|-------------------|-------------------|----------|----------|---------|
| RC676   | DD        | 452008      | 6396133      | 1554   | 1505.4    | 145                  | -59        | 156      | 258               | 102 <sup>^^</sup> | 0.26     | 0.06     | 0.1     |
|         |           |             |              |        |           |                      | incl. 166  | 176      | 10 <sup>^^</sup>  | 1.0               | 0.13     | 0.5      |         |
|         |           |             |              |        |           |                      | 288        | 322      | 34 <sup>^^</sup>  | 0.14              | 0.05     | 0.1      |         |
|         |           |             |              |        |           |                      | 460        | 486      | 26 <sup>^^</sup>  | 0.11              | 0.04     | 0.1      |         |
|         |           |             |              |        |           |                      | 506        | 894      | 388 <sup>^^</sup> | 0.34              | 0.30     | 0.1      |         |
|         |           |             |              |        |           |                      | incl. 700  | 712      | 12 <sup>^^</sup>  | 0.52              | 0.40     | 0.5      |         |
|         |           |             |              |        |           |                      | incl. 856  | 894      | 38 <sup>^^</sup>  | 0.64              | 0.51     | 0.5      |         |
|         |           |             |              |        |           |                      | 906        | 964      | 58 <sup>^^</sup>  | 0.31              | 0.17     | 0.1      |         |
|         |           |             |              |        |           |                      | incl. 950  | 962      | 12 <sup>^^</sup>  | 0.60              | 0.20     | 0.5      |         |
|         |           |             |              |        |           |                      | 1032       | 1332     | 300 <sup>^</sup>  | 0.28              | 0.27     | 0.1      |         |
|         |           |             |              |        |           |                      | incl. 1060 | 1080     | 20 <sup>^^</sup>  | 0.55              | 0.50     | 0.5      |         |
|         |           |             |              |        |           |                      | incl. 1100 | 1138     | 38                | 0.52              | 0.46     | 0.5      |         |
|         |           |             |              |        |           |                      | 1392       | 1412     | 20                | 0.10              | 0.15     | 0.1      |         |
| RC683   | DD        | 451963      | 6395068      | 1537   | 1088.7    | 328                  | -59        | 260      | 560               | 300               | 0.41     | 0.51     | 0.1     |
|         |           |             |              |        |           |                      | incl. 390  | 504      | 114               | 0.67              | 0.85     | 0.5      |         |
|         |           |             |              |        |           |                      | incl. 464  | 486      | 22                | 1.1               | 1.4      | 1        |         |
|         |           |             |              |        |           |                      | 660        | 690      | 30                | 0.10              | 0.06     | 0.1      |         |
|         |           |             |              |        |           |                      | 826        | 900      | 74                | 0.13              | 0.10     | 0.1      |         |
|         |           |             |              |        |           |                      | 914        | 1088.45  | 174.45            | 0.41              | 0.18     | 0.1      |         |
| RC684   | DD        | 453252      | 6396600      | 1420   | 1475.7    | 147                  | -63        | 550      | 606               | 56 <sup>^^</sup>  | 0.12     | 0.01     | 0.1     |
|         |           |             |              |        |           |                      | 748        | 786      | 38 <sup>^^</sup>  | 0.28              | 0.34     | 0.1      |         |

|                    |    |        |         |      |        |       |            |                                             |                  |      |      |      |     |
|--------------------|----|--------|---------|------|--------|-------|------------|---------------------------------------------|------------------|------|------|------|-----|
|                    |    |        |         |      |        |       | 814        | 1066                                        | 252 <sup>^</sup> | 0.46 | 0.53 | 0.1  |     |
|                    |    |        |         |      |        |       | incl. 962  | 1060                                        | 98 <sup>^</sup>  | 0.85 | 0.86 | 0.5  |     |
|                    |    |        |         |      |        |       | incl. 970  | 986                                         | 16 <sup>^^</sup> | 1.2  | 1.2  | 1    |     |
|                    |    |        |         |      |        |       | incl. 1016 | 1030                                        | 14 <sup>^^</sup> | 1.1  | 1.1  | 1    |     |
|                    |    |        |         |      |        |       | incl. 1044 | 1054                                        | 10               | 1.1  | 1.0  | 1    |     |
|                    |    |        |         |      |        |       | 1360       | 1382                                        | 22               | 0.11 | 0.04 | 0.1  |     |
|                    |    |        |         |      |        |       | 1394       | 1420                                        | 26               | 0.11 | 0.10 | 0.1  |     |
| RC685              | DD | 452533 | 6396281 | 1508 | 1202.3 | 149.9 | -55        | Development Hole                            |                  |      |      |      |     |
| RC686              | DD | 451569 | 6395560 | 1526 | 1085.0 | 147.9 | -59        | 386                                         | 454              | 68   | 0.12 | 0.11 | 0.1 |
|                    |    |        |         |      |        |       | 522        | 548                                         | 26               | 0.10 | 0.03 | 0.1  |     |
|                    |    |        |         |      |        |       | 572        | 600                                         | 28               | 0.12 | 0.04 | 0.1  |     |
|                    |    |        |         |      |        |       | 618        | 682                                         | 64               | 0.13 | 0.07 | 0.1  |     |
|                    |    |        |         |      |        |       | 822        | 1020                                        | 198              | 0.29 | 0.25 | 0.1  |     |
|                    |    |        |         |      |        |       | incl. 990  | 1002                                        | 12               | 0.59 | 0.18 | 0.5  |     |
| RC687              | DD | 453126 | 6396509 | 1445 | 1480.8 | 149.8 | -58        | 616                                         | 646              | 30   | 0.12 | 0.16 | 0.1 |
|                    |    |        |         |      |        |       | 714        | 1030                                        | 316              | 0.26 | 0.34 | 0.1  |     |
|                    |    |        |         |      |        |       | incl. 786  | 802                                         | 16               | 0.59 | 0.66 | 0.5  |     |
|                    |    |        |         |      |        |       | 1062       | 1090                                        | 28               | 0.12 | 0.21 | 0.1  |     |
|                    |    |        |         |      |        |       | 1224       | 1256                                        | 32               | 0.17 | 0.02 | 0.1  |     |
|                    |    |        |         |      |        |       | 1268       | 1314                                        | 46               | 0.15 | 0.02 | 0.1  |     |
|                    |    |        |         |      |        |       | 1360       | 1450                                        | 90               | 0.12 | 0.02 | 0.1  |     |
| RC688              | DD | 453385 | 6396598 | 1415 | 1535.5 | 146   | -61        | 674                                         | 700              | 26   | 0.12 | 0.15 | 0.1 |
|                    |    |        |         |      |        |       | 726        | 760                                         | 34               | 0.15 | 0.14 | 0.1  |     |
|                    |    |        |         |      |        |       | 776        | 1120                                        | 344              | 0.70 | 0.75 | 0.1  |     |
|                    |    |        |         |      |        |       | incl. 892  | 1062                                        | 170              | 1.1  | 1.1  | 0.5  |     |
|                    |    |        |         |      |        |       | incl. 894  | 972                                         | 78               | 1.1  | 1.3  | 1    |     |
|                    |    |        |         |      |        |       | incl. 988  | 1062                                        | 74               | 1.2  | 0.90 | 1    |     |
|                    |    |        |         |      |        |       | incl. 1080 | 1104                                        | 24               | 0.74 | 0.87 | 0.5  |     |
|                    |    |        |         |      |        |       | 1132       | 1214                                        | 82               | 0.18 | 0.35 | 0.1  |     |
|                    |    |        |         |      |        |       | 1244       | 1272                                        | 28               | 0.13 | 0.29 | 0.1  |     |
|                    |    |        |         |      |        |       | 1320       | 1352                                        | 32               | 0.10 | 0.02 | 0.1  |     |
| RC689              | DD | 452677 | 6396314 | 1492 | 827.9  | 147.5 | -57        | Development Hole                            |                  |      |      |      |     |
| RC690              | DD | 452587 | 6396286 | 1507 | 1226.6 | 148   | -60        | Development Hole                            |                  |      |      |      |     |
| RC691              | DD | 452550 | 6396348 | 1495 | 1252.9 | 148   | -60        | Development Hole                            |                  |      |      |      |     |
| RC691W             | DD | 452551 | 6396346 | 1498 | 842.2  | 148   | -60        | Development Hole                            |                  |      |      |      |     |
| RC692              | DD | 453147 | 6396820 | 1462 | 1749.0 | 148.1 | -53        | Assays pending                              |                  |      |      |      |     |
| RC693              | DD | 453334 | 6396606 | 1416 | 1212.8 | 238   | -59        | Geotechnical Hole - Not Sampled             |                  |      |      |      |     |
| RC694              | DD | 452677 | 6396314 | 1492 | 770.0  | 147   | -54        | Development Hole                            |                  |      |      |      |     |
| RC695              | DD | 452742 | 6396324 | 1491 | 851.5  | 150   | -64        | Development Hole                            |                  |      |      |      |     |
| RC696 <sup>#</sup> | DD | 453126 | 6396510 | 1445 | 1451.1 | 151   | -63        | Assays pending                              |                  |      |      |      |     |
| RC697              | DD | 452584 | 6396356 | 1492 | 824.2  | 147   | -57        | Development Hole                            |                  |      |      |      |     |
| RC698              | DD | 453332 | 6396598 | 1418 | 1019.7 | 200   | -71        | Geotechnical Hole - Not Sampled             |                  |      |      |      |     |
| RC699              | DD | 452539 | 6395336 | 1491 | 101.4  | 360   | -90        | Environmental Monitoring Hole - Not Sampled |                  |      |      |      |     |
| RC700 <sup>#</sup> | DD | 453422 | 6396505 | 1417 | 1265.0 | 145   | -61        | Assays pending                              |                  |      |      |      |     |
| RC701 <sup>#</sup> | DD | 453530 | 6397490 | 1469 | 964.0  | 145   | -45        | Geotechnical Hole - Not Sampled             |                  |      |      |      |     |
| RC702              | DD | 452742 | 6396326 | 1492 | 1157.5 | 150   | -59        | Development Hole                            |                  |      |      |      |     |
| RC703 <sup>#</sup> | DD | 452584 | 6396357 | 1492 | 1027.8 | 146   | -62        | Development Hole                            |                  |      |      |      |     |
| RC704 <sup>#</sup> | DD | 452550 | 6396348 | 1495 | 854.9  | 149   | -46        | Development Hole                            |                  |      |      |      |     |
| RC705 <sup>#</sup> | DD | 453310 | 6396503 | 1425 | 656.2  | 147   | -59        | Assays pending                              |                  |      |      |      |     |
| RC706 <sup>#</sup> | DD | 454519 | 6397469 | 1341 | 451.5  | 148   | -45        | Geotechnical Hole - Not Sampled             |                  |      |      |      |     |

#drilling in progress. \*\*partial intercept, assays pending. ^updated intercept ^^previously reported intercept

Figure 5. Schematic plan view map of the East Ridge showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases). 1 g/t AuEq and 2 g/t AuEq shell projections generated from a Leapfrog model and sliced at 800mRL. Gold equivalent (AuEq) grade calculated using a copper conversion factor of 1.67 ([gold grade (g/t)] + [copper grade (%)] x 1.67), using US\$1,400/oz Au, US\$3.40/lb Cu and 100%

recovery.

To view an enhanced version of Figure 5, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_007full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_007full.jpg)

Figure 6. Schematic plan view map of the East Zone showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases). 1 g/t AuEq and 2 g/t AuEq shell projections generated from a Leapfrog model and sliced at 800mRL. Gold equivalent (AuEq) grade calculated using a copper conversion factor of 1.67 ([gold grade (g/t)] + [copper grade (%)) x 1.67]), using US\$1,400/oz Au, US\$3.40/lb Cu and 100% recovery.

To view an enhanced version of Figure 6, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_008full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_008full.jpg)

Figure 7. Schematic plan view map of the Main Zone showing drill hole locations (Newcrest & Imperial) and significant Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases). 1 g/t AuEq and 2 g/t AuEq shell projections generated from a Leapfrog model and sliced at 800mRL. Gold equivalent (AuEq) grade calculated using a copper conversion factor of 1.67 ([gold grade (g/t)] + [copper grade (%)) x 1.67]), using US\$1,400/oz Au, US\$3.40/lb Cu and 100% recovery.

To view an enhanced version of Figure 7, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_009full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_009full.jpg)

Figure 8. Schematic cross section of RC688 (Section Line 35) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t AuEq, 1 g/t AuEq and 2 g/t AuEq shell projections generated from Leapfrog model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 8, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_010full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_010full.jpg)

Figure 9. Schematic cross section of RC684 (Section Line 34) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t AuEq, 1 g/t AuEq and 2 g/t AuEq shell projections generated from Leapfrog model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 9, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_011full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_011full.jpg)

Figure 10. Schematic cross section of RC687 (Section Line 32) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t AuEq, 1 g/t AuEq and 2 g/t AuEq shell projections generated from Leapfrog model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 10, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_012full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_012full.jpg)

Figure 11. Schematic cross section of RC676 (Section Line 21) showing Newcrest and Imperial drill holes

and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t AuEq, 1 g/t AuEq and 2 g/t AuEq shell projections generated from Leapfrog model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 11, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_013full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_013full.jpg)

Figure 12. Schematic cross section of RC683 (Section Line 15) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t AuEq, 1 g/t AuEq and 2 g/t AuEq shell projections generated from Leapfrog model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 12, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_014full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_014full.jpg)

Figure 13. Schematic cross section of RC673, RC675, RC679, RC680 and RC686 (Section Line 14) showing Newcrest and Imperial drill holes and Newcrest intercepts (drill intercepts have been reported in Appendix 1 of this report, and in prior Newcrest exploration releases) 0.5 g/t AuEq, 1 g/t AuEq and 2 g/t AuEq shell projections generated from Leapfrog model. Due to window size (+/- 50m) and section orientation (150°) hole may appear on multiple sections.

To view an enhanced version of Figure 13, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_015full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_015full.jpg)

## Appendix 2

### Havieron Project (Greatland Gold Plc - Joint Venture Agreement): JORC Table 1 Section 1: Sampling Techniques and Data

| Criteria              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques   | Core samples are obtained from core drilling in Proterozoic basement. Core was drilled on a 6m run. Core was cut using an automated core saw into 1m intervals with breaks for major geological changes. Sampling intervals sequences were not sampled.                                                                                                                                                                                                           |
| Drilling techniques   | Core drilling was advanced from the base of the cover sequence with a configuration.                                                                                                                                                                                                                                                                                                                                                                              |
| Drill sample recovery | Core from inclined drill holes are oriented on 3m and 6m runs using (Reflex ACTIII). At the end of each run, the bottom of hole position transferred to the whole drill core run length with a bottom of hole marker. Core recovery is systematically recorded from the commencement of drilling against driller's depth blocks in each core tray with data recorded in the field provided the depth, interval of core recovered, and interval of core recovered. |
|                       | Core recoveries were typically 100%, with isolated zones of lower recovery.                                                                                                                                                                                                                                                                                                                                                                                       |
|                       | Cover sequence drilling by the mud-rotary drilling did not yield recoveries.                                                                                                                                                                                                                                                                                                                                                                                      |

|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                       | <p><b>Commentary</b></p> <p>Geological logging recorded qualitative descriptions of lithology, all structure (for all core drilled - 4,798 m for 7 drill holes, all intersected key geological features.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Logging                                        | <p>Geotechnical measurements were recorded including Rock Quality solid core recovery and qualitative rock strength measurements.</p> <p>Magnetic susceptibility measurements were recorded every metre. intervals was determined at site on whole core samples.</p> <p>All geological and geotechnical logging was conducted at the Haverton Hill Project.</p> <p>Digital data logging was captured on diamond drill core intervals on the acQuire database.</p> <p>All drill cores were photographed, prior to cutting and/or sampling to support geological and geotechnical logging.</p> <p>The logging is of sufficient quality to support Mineral Resource estimation. Sampling, sample preparation and quality control protocols are consistent with the Mineral Resource estimation.</p> <p>Core was cut and sampled at the Telfer and Haverton core processing facility. Samples were collected in pre-numbered calico bags and grouped in plastic bags. Core sample weights typically varied from 0.5 to 4kg. Sample sizes are considered appropriate for mineralisation. Drill core samples were freighted by air and road to the laboratory.</p>                                                                                                                                                                                                                                      |
| Sub-sampling techniques and sample preparation | <p>Sample preparation was conducted at the independent ISO17025 (Intertek). Samples were dried at 105°C, and crushed to 95% passing a 3kg sub-sample, which was pulverised (using LM5) to produce a product of 95% passing 106<math>\mu</math>m. Routine grind size analysis is conducted.</p> <p>Duplicate samples were collected from crush and pulp samples at an acceptable level of variability for the material sampled and style of sample preparation.</p> <p>Periodic size checks (1:20) for crush and pulp samples and sample preparation were conducted and recorded in the acQuire database.</p> <p>Assaying of drill core samples was conducted at Intertek. All samples were digested using a 4-acid digestion followed by ICP-AES/ICP-MS determination (method FA50N/AA). Gold analyses were determined by fire assay (method FA50N/AA), which is considered to provide a total assay for gold.</p> <p>Sampling and assaying quality control procedures consisted of inclusions (CRMs), coarse residue and pulp duplicates with each batch (at least one of each).</p> <p>Assays of quality control samples were compared with reference samples as acceptable prior to use of data from analysed batches.</p> <p>Laboratory quality control data, including laboratory standards, blank and duplicate samples are captured in the acQuire database and assessed for accuracy.</p> |
| Quality of assay data and laboratory tests     | <p>Extended quality control programs including pulp samples submitted with more extensive re-submission programs have been completed.</p> <p>Analysis of the available quality control sample assay results indicates that precision and precision has been achieved and the database contains no anomalies.</p> <p>The assaying techniques and quality control protocols used are consistent with the Mineral Resource estimation and are used for reporting exploration drilling results.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                | Commentary<br>Sampling intervals defined by the geologist are electronically assigned to core cutting. Corresponding sample numbers matching pre-labelled interval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Verification of sampling and assaying                   | All sampling and assay information were stored in a secure acQuire system. Electronically generated sample submission forms providing the sample ID, sample number, and assay results were submitted with each submission to the laboratory. Assay results from the laboratory are loaded directly into the acQuire database.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Location of data points                                 | Assessment of reported significant assay intervals was verified by and assessment of high resolution core photography. The verification was completed by company personnel and the Competent Person/Quality Assurance Manager.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Data spacing and distribution                           | No adjustments are made to assay data, and no twinned holes have been used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Orientation of data in relation to geological structure | There are no currently known drilling, sampling, recovery, or other factors that would affect the accuracy or reliability of the data. Drill collar locations were surveyed using a differential GPS with Global Positioning System (GPS) and all drill holes reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                         | Drill rig alignment was attained using an electronic azimuth aligner. Drill holes were surveyed using a total station and a single shot (Axis Mining Champ Gyro). The single shot surveys have been converted to surface (Axis Mining Champ) along with a selection of drill holes. A contactor using a DeviGyro tool - confirming sufficient accuracy for the survey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                         | A LIDAR survey was completed over the project area in Nov 2019 to create a topographic model for the project with a spatial accuracy of +/- 0.1m. The topography is generally low relief to flat, elevation within the dune areas is up to 100m above sea level. The survey is based on the Australian Height Datum (AHD) steepening to the southeast. All coordinates are based on the Geocentric Datum of Australian (GDA20 Zone 51). All relative depths are based on the AHD. Within the South-East Crescent and Breccia zone drill hole spacing is approximately 200m x 200m within the initial resource extents. Outside the initial resource boundary, the spacing is approximately 200m in lateral extent within the breccia zone over an area of ~2km <sup>2</sup> to establish the degree of geological and grade continuity. |
|                                                         | Significant assay intercepts remain open. Further drilling is required to delineate the defined mineralisation. No sample compositing is applied to samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                         | Drilling intersects mineralisation at various angles. Drill holes exploring the extents of the Haverton mineral system intersected siliciclastic sedimentary facies, mineralised breccia and sub-vertical veins. This has been interpreted from historic and Newcrest drill holes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                         | Variable brecciation, alteration and sulphide mineralisation is observed. The mineralisation is subvertical and has a strike length of approximately 650m x 350m trending in a north west orientation and over 1000m in length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                         | The subvertical southeast high grade arcuate crescent sulphide zone has been defined over a strike length of up to 550m, and extended to the surface. The zone has been intersected by approximately 100 drill holes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                         | Drilling direction is oriented to intersect the steeply dipping high-grade mineralisation. The angle of intersection is greater than 40 degrees. The drilled length of the holes is greater than the true width of the mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Criteria

Commentary

The security of samples is controlled by tracking samples from drill

Drill core was delivered from the drill rig to the Havieron core yard and geotechnical logging, core processing was completed by New

High resolution core photography and cutting of drill core was unde facilities.

Sample security

Samples were freighted in sealed bags by air and road to the Labor representatives. Sample numbers are generated directly from the pre-numbered calico bags.

Verification of sample numbers and identification is conducted by t sample receipt advise issued to Newcrest.

Details of all sample movement are recorded in a database table. I analytical suite requested are recorded with the dispatch of sample discrepancies logged at the receipt of samples into the analytical s Internal reviews of core handling, sample preparation and assays I basis by both project personnel and owner representatives.

Audits or reviews

In the Competent Person's opinion, the sample preparation, securi consistent with current industry standards and are entirely appropri mineralisation identified and will be appropriate for use in the repo Resource estimates. There are no identified drilling, sampling or re adequacy and reliability of the results of the drilling programme in p

## Section 2: Reporting of Exploration Results

Criteria

Commentary

The Havieron Project is entirely contained within mining tenement Greatland Pty Ltd and Newcrest Operations Limited. I (effective 30 November 2020) and Farm-In Agreement with Greatland Gold plc. Newcrest is the manager of the Havieron expenditure requirement (US\$45 million) and is entitled to resulting in an overall joint venture interest of 60%. Newcrest to acquire a further 5% at fair market value.

Mineral tenement and land tenure status

Newcrest and the Western Desert Lands Aboriginal Council Indigenous Land Use Agreement (ILUA) which relates to the use of native title by its activities within a 60-km radius around Telfer and its future Participants (Newcrest and Greatland Gold) at Havieron.

Exploration done by other parties

The mining tenement M45/1287 wholly replaces the 1 exploration tenement on which the Havieron Project is based. obligations with respect to legislative requirements including standing for prior exploration tenement E45/4701.

Newcrest completed six core holes in the vicinity of the target completed drill targeting and drilling of nine Reverse Circulation holes approximately 6,800m in 2018. Results of drilling program have been reported on the Greatland Gold website.

Drilling has defined an intrusion-related mineral system with sulphide-hosted higher-grade gold-copper mineralisation.

## Criteria

## Commentary

The Havieron Project is located within the north-western Neoproterozoic Paterson Orogen (formerly Paterson Supergroup) hosts the Havieron prospect and consists of and is entirely overlain by approximately 420m of Phanerozoic Quaternary aeolian sediments.

## Geology

Gold and copper mineralisation at Havieron consists of and copper mineralisation typical of intrusion-related systems, hosted by metasedimentary rocks (meta-sandstones, dolomites) rocks of an undetermined age. The main mineral assemblages are pyrrhotite and pyrite sulphide mineral assemblages as breccia and vein mineralisation. This mineralisation event is associated with amphibole-carbonate mineralisation. Drilling has partially defined the extents of mineralisation, defining an arcuate shaped mineralised zone, and to depths of up to 200m. As provided.

## Drill hole Information

Significant assay intercepts are reported as (A) lengths of 10m or greater than or equal to 10m, with a maximum of 5m consecutive intervals, and (B) intervals of >0.2g/t Au for greater than or equal to 20m, and (C) intervals of >30g/t which are greater or equal to 30m and applied to intercept calculations.

## Data aggregation methods

Significant assay intervals reported represent apparent widths of mineralisation and true widths are less than downhole widths. True widths are estimated where possible when all results are received, and final geological interpretation is completed. As provided.

## Relationship between mineralisation widths and intercept lengths

This is the sixteenth release of Exploration Results for the Havieron Project. Previous releases of exploration results are dated 25 July 2019, 10 September 2019, 24 October 2019, 27 November 2019, 24 December 2019, 20 March 2020, 30 April 2020, 11 June 2020, 23 July 2020, 27 August 2020, 24 September 2020, 22 October 2020, 23 December 2020, 28 January 2021, 11 March 2021 and 12 April 2021.

## Diagrams

## Balanced reporting

Earlier reporting of exploration programs conducted by Newcrest Mining Ltd. have been reported. Exploration drilling programs are ongoing and will be reported in subsequent Newcrest releases.

## Other substantive exploration data

Nil

## Further work

Growth drilling is planned to extend the December 2020 limits of the Havieron mineralised system.

Drillhole data<sup>(1)</sup>

## Havieron Project, Paterson Province, Western Australia

Reporting Criteria: Intercepts reported are downhole drill width (not true width) Au >0.20ppm (0.2g/t Au) and minimum 20m downhole width with maximum consecutive internal dilution of 10m. Average grades are based on length-weighting of samples grades. Also highlighted are high grade intervals of Au >1.0ppm (1g/t Au) and minimum 10m downhole width with maximum consecutive internal dilution of 5m, and intervals of >30g/t which are greater or equal to 30 gram metres (Au\_ppm x length) are tabled. Gold grades are reported to two significant figures, the downhole lengths are rounded to 0.1m which may cause some apparent discrepancies in interval widths. Samples are from core drilling which is PQ, HQ or NQ in diameter. Core is photographed and logged by the geology team before being cut. Half core PQ, HQ and NQ samples are prepared for assay and the remaining material is retained in the core farm for future reference. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Total depth (end of hole) is rounded to one decimal place for reporting purposes. Collars denoted with a \* show partial results, with further significant assays to be reported in subsequent exploration updates.

| Hole ID  | Hole Type | Easting (m) | Northing (m) | RL Depth (m) | Total Depth (m) | Azi  | Dip | From (m) | To (m) | Interval (m) | Au (ppm) | Cu (pct) | Cut off    |           |
|----------|-----------|-------------|--------------|--------------|-----------------|------|-----|----------|--------|--------------|----------|----------|------------|-----------|
| HAD086W1 | MR-DD     | 464623      | 7598148      | 258          | 1460.6          | 225  | -64 | 1240     | 1274   | 34           | 3.9      | 0.28     | 0.2 g/t Au |           |
|          |           |             |              |              |                 | incl |     | 1259     | 1271.2 | 12.2         | 10       | 0.36     | 1.0 g/t Au |           |
|          |           |             |              |              |                 |      |     | 1265     | 1266   | 1            | 47       | 0.05     | 30 g/t Au  |           |
|          |           |             |              |              |                 |      |     | 1308     | 1407.7 | 99.7         | 2.5      | 0.85     | 0.2 g/t Au |           |
|          |           |             |              |              |                 | incl |     | 1313.6   | 1364   | 50.4         | 4.3      | 1.6      | 1.0 g/t Au |           |
|          |           |             |              |              |                 |      |     | incl     | 1331   | 1331.9       | 0.9      | 46       | 3.8        | 30 g/t Au |

| Hole ID  | Hole Type              | Easting (m) | Northing (m) | RL (m) | Total Depth (m) | Azi    | Dip | From (m) | To (m) | Interval (m) | Au (ppm) | Cu (pct) | Cut off    |
|----------|------------------------|-------------|--------------|--------|-----------------|--------|-----|----------|--------|--------------|----------|----------|------------|
|          |                        |             |              |        |                 | incl   |     | 1339.4   | 1340.3 | 0.9          | 50       | 1.3      | 30 g/t Au  |
|          |                        |             |              |        |                 | incl   |     | 1358     | 1359   | 1            | 50       | 0.01     | 30 g/t Au  |
|          |                        |             |              |        |                 | incl   |     | 1393     | 1403   | 10           | 2.1      | 0.13     | 1.0 g/t Au |
|          |                        |             |              |        |                 |        |     | 1426.3   | 1460   | 33.7         | 0.39     | 0.09     | 0.2 g/t Au |
| HAD089W1 | MR-DD 4642997597746258 | 1138        | 290          | -61    | 602             | 713.2  |     | 111.2    |        | 0.32         | 0.02     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | 752.9           | 791.5  |     | 38.6     |        | 0.43         | 0.08     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | 878.1           | 930.9  |     | 52.8     |        | 0.54         | 0.13     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | 943.6           | 968.8  |     | 25.2     |        | 0.31         | 0.04     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | 1009.7          | 1091   |     | 81.3     |        | 1.2          | 0.04     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | 1078            | 1079   |     | 1        |        | 37           | 0.01     | 30       | g/t Au     |
| HAD096W1 | MR-DD 4637177597354262 | 1350.4      | 31           | -61    | 704             | 741.5  |     | 37.5     |        | 0.20         | 0.03     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | 812             | 849    |     | 37       |        | 0.58         | 0.15     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | 865.4           | 865.8  |     | 0.4      |        | 142          | 0.04     | 30       | g/t Au     |
|          |                        |             |              |        | 876.6           | 976    |     | 99.4     |        | 0.60         | 0.20     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | 998             | 1023   |     | 25       |        | 0.27         | 0.27     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | 1037            | 1115   |     | 78       |        | 0.45         | 0.07     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | 1271.4          | 1321   |     | 49.6     |        | 0.65         | 0.08     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | incl            | 1281.2 |     | 1296     |        | 14.8         | 1.9      | 0.15     | 1.0 g/t Au |
| HAD097W3 | MR-DD 4644367598085257 | 830         | 222          | -63    | 620.2           | 668    |     | 47.8     |        | 2.3          | 0.28     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | incl            | 639.7  |     | 668      |        | 28.3         | 3.8      | 0.45     | 1.0 g/t Au |
| HAD106W2 | MR-DD 4635217597782257 | 1026.4      | 69           | -57    | 648.7           | 702.8  |     | 54.1     |        | 0.56         | 0.09     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | incl            | 674.9  |     | 688      |        | 13.1         | 1.6      | 0.11     | 1.0 g/t Au |
|          |                        |             |              |        |                 | 726.9  |     | 754.8    |        | 27.9         | 0.22     | 0.06     | 0.2 g/t Au |
|          |                        |             |              |        |                 | 793    |     | 850.3    |        | 57.3         | 0.31     | 0.06     | 0.2 g/t Au |
| HAD133   | MR-DD 4640717598315257 | 1430.2      | 171          | -65    | 1221            | 1329.5 |     | 108.5    |        | 1.7          | 0.43     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | incl            | 1244.7 |     | 1268     |        | 23.3         | 2.7      | 0.59     | 1.0 g/t Au |
|          |                        |             |              |        | incl            | 1276   |     | 1289     |        | 13           | 2.4      | 0.62     | 1.0 g/t Au |
|          |                        |             |              |        | incl            | 1309.9 |     | 1329     |        | 19.1         | 2.3      | 0.38     | 1.0 g/t Au |
|          |                        |             |              |        |                 | 1345   |     | 1430     |        | 85           | 11       | 0.29     | 0.2 g/t Au |
|          |                        |             |              |        | incl            | 1363   |     | 1376     |        | 13           | 32       | 0.46     | 1.0 g/t Au |
|          |                        |             |              |        | incl            | 1366.6 |     | 1372.6   |        | 6            | 62       | 0.24     | 30 g/t Au  |
|          |                        |             |              |        | incl            | 1385.7 |     | 1386.4   |        | 0.7          | 82       | 0.19     | 30 g/t Au  |
|          |                        |             |              |        | incl            | 1396.5 |     | 1411     |        | 14.5         | 32       | 0.33     | 1.0 g/t Au |
|          |                        |             |              |        | incl            | 1403   |     | 1406.6   |        | 3.6          | 120      | 0.46     | 30 g/t Au  |
| HAD136   | MR-DD 4644517597544257 | 1468.9      | 300          | -62    | 501             | 556.2  |     | 55.2     |        | 2.5          | 0.65     | 0.2      | 0.2 g/t Au |
|          |                        |             |              |        | incl            | 506.8  |     | 531.3    |        | 24.5         | 5.4      | 0.95     | 1.0 g/t Au |
|          |                        |             |              |        | incl            | 512    |     | 513      |        | 1            | 31.4     | 1.2      | 30 g/t Au  |
|          |                        |             |              |        |                 | 788.8  |     | 883.6    |        | 94.8         | 0.34     | 0.12     | 0.2 g/t Au |
|          |                        |             |              |        |                 | 919.7  |     | 940      |        | 20.3         | 0.35     | 0.16     | 0.2 g/t Au |
|          |                        |             |              |        |                 | 979.3  |     | 1009     |        | 29.7         | 0.20     | 0.10     | 0.2 g/t Au |
|          |                        |             |              |        |                 | 1022.6 |     | 1137.5   |        | 114.9        | 0.26     | 0.10     | 0.2 g/t Au |
|          |                        |             |              |        |                 | 1148.9 |     | 1194.6   |        | 45.7         | 0.44     | 0.06     | 0.2 g/t Au |
|          |                        |             |              |        |                 | 1329   |     | 1354     |        | 25           | 0.22     | 0.01     | 0.2 g/t Au |

#drilling in progress. \*\*partial intercept, assays pending. ^updated intercept ^^previously reported intercept

Figure 14. Schematic plan view map showing drill hole locations and significant intercepts reported in this release superimposed on the interpreted geology. Previously reported holes are not shown for the sake of clarity. Note some holes and results appear on multiple sections due to the sections orientation and sections overlap.

To view an enhanced version of Figure 14, please visit:  
[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_016full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_016full.jpg)

Figure 15. Schematic cross section of geology and significant new drillhole intercepts (looking northwest, Section Line S1, +/-50m section width, as shown in Figure 10). Due to section window size and orientation holes may appear on multiple sections.

To view an enhanced version of Figure 15, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_017full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_017full.jpg)

Figure 16. Schematic cross section of geology and significant new drillhole intercepts (looking northwest, Section Line S2, +/-50m section width, as shown in Figure 10). Due to section window size and orientation holes may appear on multiple sections.

To view an enhanced version of Figure 16, please visit:

[https://orders.newsfilecorp.com/files/7614/87139\\_fa1e024f04a2f90f\\_018full.jpg](https://orders.newsfilecorp.com/files/7614/87139_fa1e024f04a2f90f_018full.jpg)

### Forward Looking Statements

This document includes forward looking statements and forward looking information within the meaning of securities laws of applicable jurisdictions. Forward looking statements can generally be identified by the use of words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "believe", "continue", "objectives", "targets", "outlook" and "guidance", or other similar words and may include, without limitation, statements regarding estimated reserves and resources, certain plans, strategies, aspirations and objectives of management, anticipated production, study or construction dates, expected costs, cash flow or production outputs and anticipated productive lives of projects and mines. Newcrest continues to distinguish between outlook and guidance. Guidance statements relate to the current financial year. Outlook statements relate to years subsequent to the current financial year.

These forward looking statements involve known and unknown risks, uncertainties and other factors that may cause Newcrest's actual results, performance and achievements or industry results to differ materially from any future results, performance or achievements, or industry results, expressed or implied by these forward-looking statements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which Newcrest operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation. For further information as to the risks which may impact on Newcrest's results and performance, please see the risk factors included in the Annual Information Form dated 13 October 2020 lodged with ASX and SEDAR.

Forward looking statements are based on Newcrest's good faith assumptions as to the financial, market, regulatory and other relevant environments that will exist and affect Newcrest's business and operations in the future. Newcrest does not give any assurance that the assumptions will prove to be correct. There may be other factors that could cause actual results or events not to be as anticipated, and many events are beyond the reasonable control of Newcrest. Readers are cautioned not to place undue reliance on forward looking statements, particularly in the current economic climate with the significant volatility, uncertainty and disruption caused by the COVID-19 pandemic. Forward looking statements in this document speak only at the date of issue. Except as required by applicable laws or regulations, Newcrest does not undertake any obligation to publicly update or revise any of the forward looking statements or to advise of any change in assumptions on which any such statement is based.

### Ore Reserves and Mineral Resources Reporting Requirements

As an Australian Company with securities listed on the Australian Securities Exchange (ASX), Newcrest is subject to Australian disclosure requirements and standards, including the requirements of the Corporations Act 2001 and the ASX. Investors should note that it is a requirement of the ASX listing rules that the reporting of ore reserves and mineral resources in Australia is in accordance with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code) and that Newcrest's ore reserve and mineral resource estimates comply with the JORC Code.

Newcrest is also subject to certain Canadian disclosure requirements and standards, as a result of its secondary listing on the Toronto Stock Exchange (TSX), including the requirements of National Instrument 43-101 (NI 43-101). Investors should note that it is a requirement of Canadian securities law that the reporting of Mineral Reserves and Mineral Resources in Canada and the disclosure of scientific and technical information concerning a mineral project on a property material to Newcrest comply with NI 43-101. Newcrest's material properties are currently Cadia, Lihir and Wafi-Golpu.

#### Competent Person's Statement

The information in this document that relates to Exploration Targets, Exploration Results, and related scientific and technical information, is based on and fairly represents information compiled by Mr F. MacCorquodale. Mr MacCorquodale is the General Manager - Greenfields Exploration and a full-time employee of [Newcrest Mining Ltd.](#). He is a shareholder in [Newcrest Mining Ltd.](#) and is entitled to participate in Newcrest's executive equity long term incentive plan, details of which are included in Newcrest's 2020 Remuneration Report. He is a Member of the Australian Institute of Geoscientists. Mr MacCorquodale has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code and as a Qualified Person under NI 43-101. Mr MacCorquodale approves the disclosure of scientific and technical information contained in this document and consents to the inclusion of material of the matters based on his information in the form and context in which it appears.

Authorised by the Newcrest Disclosure Committee

For further information please contact

#### Investor Enquiries

Tom Dixon  
+61 3 9522 5570  
+61 450 541 389  
Tom.Dixon@newcrest.com.au

Ben Lovick  
+61 3 9522 5334  
+61 407 269 478  
Ben.Lovick@newcrest.com.au

#### North American Investor Enquiries

Ryan Skaleskog  
+1 866 396 0242  
+61 403 435 222  
Ryan.Skaleskog@newcrest.com.au

#### Media Enquiries

Tom Dixon  
+61 3 9522 5570  
+61 450 541 389  
Tom.Dixon@newcrest.com.au

Annie Lawson  
+61 3 9522 5750  
+61 409 869 986  
Annie.Lawson@newcrest.com.au

This information is available on our website at [www.newcrest.com](http://www.newcrest.com)

---

1 # drilling in progress \*\* partial intercept, assays pending ^ updated intercept or ^^ previously reported.

---

2 # drilling in progress \*\* partial intercept, assays pending ^ updated intercept or ^^ previously reported.

3 # drilling in progress \*\* partial intercept, assays pending ^ updated intercept or ^^ previously reported.

To view the source version of this press release, please visit <https://www.newsfilecorp.com/release/87139>

---

Dieser Artikel stammt von [Rohstoff-Welt.de](https://www.rohstoff-welt.de)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/386069--Newcrest-Mining-Limited---Exploration-Update-10-June-2021.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

---

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!  
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinen](#).