

Benz Mining: Electromagnetics Identify New Conductive Trend in Footwall of Eastmain Mine

13.01.2021 | [Newsfile](#)

HIGHLIGHTS

- Re-processing of FLEM identified a large conductor in the footwall of the existing resource at A Zone (376,000oz at 7.9gpt gold)
- Last DHEM survey of historical hole in 2020 identified off-hole conductors 200m in the footwall of A Zone confirming FLEM modelled plate
- These conductors represent a potential 3rd trend to be tested in upcoming drill programs
- Exploration expected to restart in January with 50,000m drill program and additional EM surveys to identify further targets across other trends with VTEM anomalies
- Results from 2020 drill program expected shortly

Toronto, January 13, 2021 - [Benz Mining Corp.](#) (TSXV: BZ) (ASX: BNZ) (the Company or Benz) is pleased to announce the discovery of a third conductive trend, parallel to and 200m in the footwall of the existing Eastmain resource envelope. This trend was confirmed by the last down hole electromagnetic (DHEM) survey of the 2020 field campaign, the results of which have now been interpreted.

Figure 1: Third potentially mineralized trend at Eastmain with 2020 drilling and all 2020 EM conductors (FLEM-Green and DHEM-Blue)

To view an enhanced version of this graphic, please visit:
https://orders.newsfilecorp.com/files/1818/71937_figure1.jpg

Third Parallel Conductive Trend identified

Second pass processing of fixed loop electromagnetic (FLEM) data in late 2020 identified a conductor in the footwall of the A Zone. The final DHEM survey for the 2020 season probed a deep historical stratigraphic hole drilled well into the footwall of the Eastmain deposit. Strong off-hole conductors confirmed the structural position of the modelled FLEM conductor and the existence of a strongly conductive trend with an EM response comparable with the existing known Eastmain mineralization. The modelled conductor and off hole DHEM have not been previously drilled and the trend seems to continue to the NW of Zone A.

Figure 2: FLEM modelled conductors from 2nd pass FLEM processing

To view an enhanced version of this graphic, please visit:
https://orders.newsfilecorp.com/files/1818/71937_figure2.jpg

CEO, Xavier Braud, commented:

"The last of the EM data for 2020 brought us a nice surprise. Historically, mineralization had been identified along the mine series trend over a strike length of 10km. When we began assessing the Eastmain Project in early 2020 it became evident that there was the potential for multiple repeats of this mine series within our extensive tenement package. Since commencing exploration in July 2020, our exploration strategy has identified that there is now the potential for 3 mineralized trends. We look forward to further ground

geophysical programs in 2021 to further test VTEM anomalies which already highlight the potential for multiple additional trends. The Eastmain Gold Project is shaping up to become a very large system and we look forward to testing these targets in 2021."

Figure 3: Schematic cross section with all EM conductors and 2020 drilling highlighting the new footwall conductors, potentially third newly identified trend

To view an enhanced version of this graphic, please visit:

https://orders.newsfilecorp.com/files/1818/71937_0e7c8e9ef47eaa49_007full.jpg

The Eastmain Gold Project, situated on the Upper Eastmain Greenstone Belt in Quebec, Canada, currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold (Indicated: 236,500oz at 8.2gpt gold, Inferred: 139,300oz at 7.5gpt gold). The existing gold mineralization is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite in highly deformed and altered rocks making it amenable to detection using electromagnetic techniques. Multiple gold occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited but highly encouraging testing outside the existing resource area.

This press release was prepared under supervision and approved by Dr. Danielle Giovenazzo, P.Geo, acting as Benz's qualified person under National Instrument 43-101.

About Benz Mining Corp.

[Benz Mining Corp.](#) brings together an experienced team of geoscientists and finance professionals with a focused strategy to acquire and develop mineral projects with an emphasis on safe, low risk jurisdictions favourable to mining development. Benz is earning a 100% interest in the former producing high grade Eastmain gold mine, Ruby Hill West and Ruby Hill East projects in Quebec.

The Eastmain Gold Project is situated within the Upper Eastmain Greenstone Belt in Quebec, Canada and currently hosts a NI 43-101 and JORC (2012) compliant resource of 376,000oz at 7.9gpt gold. The existing gold mineralization is associated with 15-20% semi-massive to massive pyrrhotite, pyrite and chalcopyrite making it amenable to detection by electromagnetics. Several gold mineralization occurrences have been identified by previous explorers over a 10km long zone along strike from the Eastmain Mine with very limited testing outside the existing resource area.

On behalf of the Board of Directors of [Benz Mining Corp.](#)

Xavier Braud, CEO

For more information please contact:

Paul Fowler
Head of Corporate Development (Canada)
[Benz Mining Corp.](#)
Telephone: +1 416 356 8165
Email: info@benzmining.com

Xavier Braud
CEO, Head of Corporate Development (Aus)
[Benz Mining Corp.](#)
Telephone +61 423 237 659
Email: info@benzmining.com

Forward-Looking Information: Certain statements contained in this news release may constitute "forward-looking information" as such term is used in applicable Canadian securities laws. Forward-looking information is based on plans, expectations and estimates of management at the date the information is provided and is subject to certain factors and assumptions, including, that the Company's financial condition

and development plans do not change as a result of unforeseen events and that the Company obtains regulatory approval. Forward-looking information is subject to a variety of risks and uncertainties and other factors that could cause plans, estimates and actual results to vary materially from those projected in such forward-looking information. Factors that could cause the forward-looking information in this news release to change or to be inaccurate include, but are not limited to, the risk that any of the assumptions referred to prove not to be valid or reliable, that occurrences such as those referred to above are realized and result in delays, or cessation in planned work, that the Company's financial condition and development plans change, and delays in regulatory approval, as well as the other risks and uncertainties applicable to the Company as set forth in the Company's continuous disclosure filings filed under the Company's profile at www.sedar.com. The Company undertakes no obligation to update these forward-looking statements, other than as required by applicable law.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ACCURACY OR ADEQUACY OF THIS RELEASE.

Competent Person's Statements: The information in this report that relates to Exploration Results is based on and fairly represents information and supporting information compiled by Mr Xavier Braud, who is a member of the Australian Institute of Geoscientists (AIG membership ID:6963). Mr Braud is a consultant to the Company and has sufficient experience in the style of mineralization and type of deposits under consideration and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Braud holds securities in [Benz Mining Corp.](#) and consents to the inclusion of all technical statements based on his information in the form and context in which they appear.

The information in this announcement that relates to the Inferred Mineral Resource was first reported under the JORC Code by the Company in its prospectus released to the ASX on 21 December 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and confirms that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Appendix 1: JORC Tables
Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation
Sampling techniques	<ul style="list-style-type: none">● Nature and quality of sampling (eg cut channels, random chip measurement tools appropriate to the minerals under investigation or handheld XRF instruments, etc). These examples should not be limited to these examples.● Include reference to measures taken to ensure sample representativeness, including details of any measurement tools or systems used.● Aspects of the determination of mineralisation that are Material.● In cases where 'industry standard' work has been done this should be stated and the reasons for deviation from industry standard explained.● Where circulation drilling was used to obtain 1 m samples from which only a 10 cm chip was retained (eg '10 cm charge for fire assay'). In other cases more explanation may be required.● Gold that has inherent sampling problems. Unusual commodities (eg gold in nodules) may warrant disclosure of detailed information.
Drilling techniques	<ul style="list-style-type: none">● Drill type (eg core, reverse circulation, open-hole hammer, rock saw, auger, etc) and details (eg core diameter, triple or standard tube, depth of hole, type of bit, whether core is oriented and if so, by what method, etc).

Criteria

JORC Code explanation

Drill sample recovery

- Method of recording and assessing core and chip sample recovery.
- Measures taken to maximise sample recovery and ensure recovery.
- Whether a relationship exists between sample recovery and any loss/gain occurred due to preferential loss/gain of fine/coarse material.

Logging

- Whether core and chip samples have been geologically and geographically logged to support appropriate Mineral Resource estimation, mining studies and environmental impact assessments.
- Whether logging is qualitative or quantitative in nature. Core logging details such as orientation and spacing should be sufficient to support the results.
- The total length and percentage of the relevant intersections logged.

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all cut.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether拒采 (rare metal) samples are included.
- For all sample types, the nature, quality and appropriateness of the sample preparation, including instrument make and model, sample sizes, reject sizes, recovery, sieving and any other relevant details.
- Quality control procedures adopted for all sub-sampling stages.
- Measures taken to ensure that the sampling is representative, for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material.

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether a blank test, duplicate or duplicate analysis was used to verify the results.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used for each analysis, together with a description of the determination of any quality control data used.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, replicates, external checks) and whether acceptable levels of accuracy (ie lack of bias) have been established.

Verification of sampling and assaying

- The verification of significant intersections by either independent or duplicate assay.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data reductions and any data quality control procedures such as blank and duplicate runs.
- Discuss any adjustment to assay data.

Location of data points

- Accuracy and quality of surveys used to locate drill holes (control points, grid and profile lines, topographic control, etc) and other locations used in Mineral Resource estimation.
- Specification of the grid system used.
- Quality and adequacy of topographic control.

Data spacing and distribution

- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the continuity appropriate for the Mineral Resource and Ore Reserve classifications applied.
- Whether sample compositing has been applied.

Orientation of data in relation to geological structure

- Whether the orientation of sampling achieves unbiased sampling, considering the geological setting in which this is known, considering the deposit type.
- If the relationship between the drilling orientation and the orientation of geological structures is considered to have introduced a sampling bias, this should be explained.

Sample security

- The measures taken to ensure sample security.

Audits or reviews

- The results of any audits or reviews of sampling techniques and data quality.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation
Mineral tenement and land tenure status	<ul style="list-style-type: none">● Type, reference name/number, location and ownership parties such as joint ventures, partnerships, overlying wilderness or national park and environmental significance● The security of the tenure held at the time of reporting, licence to operate in the area.

Criteria

JORC Code explanation

Exploration done by other parties

● Acknowledgment and appraisal of exploration by other parties

Geology

● Deposit type, geological setting and style of mineralization

Criteria

JORC Code explanation

Drill hole Information

- A summary of all information material to the understanding of the following information for all Material drill holes:
 - easting and northing of the drill hole collar
 - elevation or RL (Reduced Level - elevation)
 - dip and azimuth of the hole
 - down hole length and interception depth
 - hole length.
- If the exclusion of this information is justified on the basis that the exclusion does not detract from the understanding, explain why this is the case.

Data aggregation methods

- In reporting Exploration Results, weighting average, truncations (eg cutting of high grades) and cut-off grade.
- Where aggregate intercepts incorporate short lengths of high grade results, the procedure used for such aggregations should be shown in detail.
- The assumptions used for any reporting of meta

Relationship between mineralisation widths and intercept lengths

- These relationships are particularly important in reporting Exploration Results.
- If the geometry of the mineralisation with respect to the orientation of the drill holes is such that significant widths are not reported.
- If it is not known and only the down hole lengths are reported, the effect (eg 'down hole length, true width not known).

Diagrams

- Appropriate maps and sections (with scales) and tables showing the locations of significant discovery being reported. These should include the collar locations and appropriate sectional views.

Balanced reporting

- Where comprehensive reporting of all Exploration Results is practicable, both low and high grades and/or widths should be reported.

Other substantive exploration data

- Other exploration data, if meaningful and material to an assessment of resource potential, should be reported.

Further work

- The nature and scale of planned further work (eg additional diamond drilling, large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions to the mineralisation, future drilling areas, provided that this information is not commercially sensitive.

To view the source version of this press release, please visit <https://www.newsfilecorp.com/release/71937>

Dieser Artikel stammt von [Rohstoff-Welt.de](https://www.rohstoff-welt.de)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/371736--Benz-Mining--Electromagnetics-Identify-New-Conductive-Trend-in-Footwall-of-Eastmain-Mine.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer](#)!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinen](#).