

American Battery Metals Corp. Issues Shareholder Letter

13.10.2020 | [ACCESS Newswire](#)

INCLINE VILLAGE, October 13, 2020 - American Battery Metals Corporation (OTCQB:ABML) (the "Company"), an American-owned lithium-ion battery recycling technology and advanced extraction company with extensive mineral resources in Nevada, is pleased to provide the following Shareholder Letter.

Dear Valued Shareholders,

I am excited to share with you reflections on American Battery Metals Corporation's 2020 achievements and to preview our plans for the year ahead.

As you know, [American Battery Metals Corp.](#) (soon to be re-named American Battery Technology Company "ABTC") is a startup company in the lithium-ion battery industry. We have built a clean technology platform that increases production of primary metals used in the batteries that power electric cars, grid storage applications, consumer electronics and tools.

Our green platform creates a circular economy for battery metals that champions ethical and environmentally sustainable sourcing of critical materials.

ABTC has built its capacity to produce these metals through three approaches: 1) recycling of lithium-ion batteries to recover battery metals, 2) extraction from primary resources, and 3) exploration of new primary resources. Together the three approaches comprise a unique technology platform that ensures battery metals are sourced and re-used in an environmentally friendly closed-loop fashion. ABTC's multi-pronged approach builds the foundation for a circular economy of battery metals that supports a global shift away from fossil fuel energy sources.

To better reflect the multi-pronged approach we have built out in 2020, [American Battery Metals Corp.](#) is excited to transition our corporate name to American Battery Technology Company. The new name demonstrates our commitment to creating an environmentally sustainable technology platform that can be deployed in multiple ways (exploration, extraction, recycling) to meet U.S. and global demand for battery metals.

Throughout 2020, our primary objective has been to escalate commercial application of our first-of-kind lithium-ion battery recycling and extraction capacities. Progress on the following focus areas has enabled us to do so:

1. Developing a physical pilot factory
2. Expanding the team
3. Positioning technology platform for commercial deployment
4. Building strategic partnerships

Developing a physical factory: ABTC took control of twelve and a half acres of industrial land for a pilot factory in Fernley, Nevada in August 2020. Purpose of the pilot factory is to demonstrate commercialized deployment of ABTC's closed-loop technology platform that extracts and recycles lithium-ion battery materials. We are currently navigating the various permitting processes for the pilot factory and plan to launch commercial operations in the coming year. (Please see the video of our groundbreaking here).

This first phase of the factory will consist of approximately 30,000 sq. ft. of industrial processing space, as well as laboratory and office space. Once this first portion is operational, the Company estimates that this battery recycling facility will be operating in a financially self-sufficient manner as it sells scrap metal and high

value metal filter cake products.

Our Fernley facility will be designed to annually manage 20,000 metric tons of scrap materials and end-of-life batteries. To put this in context, currently only 90,000 metric tons of battery materials were recycled globally in 2019. This plant will continue to manage 20,000 metric tons per year for the foreseeable future.

When our recycling plant is operational, ABTC anticipates seeking an uplisting to a national exchange at an optimal time that is best for meeting company objectives and increased shareholder value.

Expanding the team: ABTC has on-boarded key personnel in the areas of construction management, finance, and chemical engineering to accelerate commercial deployment of our battery material extraction and recycling platform. Our leadership team has expanded with the promotion of Ryan Melsert to Chief Technology Officer and company Director and hiring of Menka Sethi as Chief Operating Officer. We will announce additional Officer hires and Directors in the coming months to round out the leadership team that will scale ABTC to a global leader in lithium-ion battery material production.

Positioning technology platform for commercial deployment: Below are summaries of how ABTC has advanced exploration, extraction, and recycling technologies for commercial deployment upon opening of the Fernley pilot factory.

Recycling: ABTC has developed a universal lithium-ion battery recycling system that is able to recycle a wide range of battery forms (packs, modules, cylindrical cells, prismatic cells, pouch cells, defect and intermediate waste cells, metal scraps, slurries, and powders) and cathode chemistries (lithiated cobalt oxide, lithiated nickel-cobalt-aluminum oxide, lithiated nickel-cobalt-manganese oxide, lithiated nickel-cobalt-manganese-aluminum oxide, lithiated nickel-oxide, and lithiated manganese-oxide) of various relative weighting of transition metals. The few lithium-ion battery recycling facilities in operation globally generally implement "brute force" methods of processing batteries. They perform bulk high temperature calcinations or bulk acid dissolutions. These upfront processes can be simpler to implement, however they make it difficult to enable high material recovery efficiencies of high value metal products downstream.

ABTC has developed a strategic recycling process that does not employ high temperature operations or bulk chemical treatments of the full battery. This process is inherently more "green" and reaffirms ABTC's deep commitment to environmental stewardship.

Members of the ABTC team have previously worked in the design, construction, commissioning, and optimization of one of the largest lithium-ion battery manufacturing factories in the world. The team gained first-hand understanding of every stage of lithium-ion battery cell manufacturing, and a fundamental understanding of the mechanisms that can cause battery components, cells, and modules to fail. Our team has developed an automated high speed mechanical separation process, which works to exploit the weaknesses in battery design to essentially "de-manufacture" the modules and cells in a rapid and automated fashion in order to dissect and separate the constituent components. This system is able to feed battery materials, without bulk discharging operations, and separate module materials, cell casings, electrode foils, low density materials, material powders, and wastewater in a matter of minutes without any direct hands-on operator interactions.

After the battery feedstock material is separated and sorted, what remains is a stream that contains rinse water, organic carbonates, dissolved fluorine and phosphorous species, dissolved metals, and is of very high pH due to the leaching of loosely held lithium from the electrodes. While many current facilities lightly treat this water stream in order to meet discharge requirements, the ABTC team has instead developed a 6-part system that is able to treat this water in a targeted fashion, extract contaminants in non-hazardous forms, and purify the water to a higher quality than even the onsite well water. This treated water is then re-used back in the separations process in a closed loop fashion. The avoidance of the discharge of this water, and of the purchasing of makeup water, results in significant leveled cost savings and a dramatically lowered environmental footprint.

While the scrap metal products are sold directly after being separated from the automated disassembly system, the cathode and anode powders are sent for further processing in an internally developed chemical extraction system. This consists of a series of dilute acid dissolution, impurity removal, selective extraction, and purification systems that are able to individually extract lithium, nickel, cobalt, and manganese elemental

metals and upgrade them to the battery cathode grade specifications demanded by high energy density cathode manufacturers.

Through the high speed and automated de-manufacturing of a wide variety of battery feedstock materials, and the low cost and high material recovery efficiency chemical extraction train, ABTC is able to successfully extract battery metals from end of life products and manufacturing waste and return them to the lithium-ion battery manufacturing supply chain in an economically sustainable fashion. As a result of their lower environmental footprint, lower total cost of production, and high stability of supply these recycled battery cathode metal feedstocks are highly valuable and sought after by domestic US high energy density cathode manufacturers.

Extraction: ABTC has been working with several lithium-rich resource owners within the Clayton Valley area of Central Nevada, to analyze and characterize sample materials from various locations. Our team has found that the mechanisms by which lithium is held within these deposits is quite unique, and we have been performing bench scale trials on an internally developed first-of-kind selective leaching process for the low-cost extraction of lithium from these claystone resources. This novel method of enabling a selective leaching of lithium from these claystone sedimentary resources has allowed for significantly lower consumption of acid, lower levels of contaminants in the generated leach liquor, and lower overall costs of production. After reviewing the performance of this novel process, and confirming its uniqueness through discussions with third party industry analysts, ABTC is considering preparing and submitting an initial provisional patent application for this technology.

With the material generated during these selective extraction trials, ABTC has performed bench scale separations, purification, and concentration processes to produce a high purity aqueous lithium hydroxide solution followed by crystallization and filtration processes to produce a battery cathode grade lithium hydroxide powder product. ABTC is currently evaluating the composition and morphology of these product materials relative to the required material specifications from high energy density cathode manufacturers in order to determine the technical and economic feasibility of manufacturing lithium hydroxide monohydrate products through this set of technologies with Clayton Valley claystone sedimentary resources as the feedstock.

Exploration: Our exploration efforts are currently focused on the sampling and characterization of lithium-bearing brine and claystone sedimentary resources in the Western Nevada Basin (WNB) located in Nye County, Nevada. Through sampling and evaluation of its previous holdings over the past year, the Company has recently down selected from 1,300 claims to the most promising resources and currently holds 647 placer mining claims on over 12,940 acres of land. The Company is performing bench scale characterization and extraction trials to evaluate the technical and economic feasibility of extracting elemental lithium from these resources in order to produce battery grade lithium hydroxide, and other high value lithium products, for sale to the battery metals market.

ABTC has been evaluating the expansion of exploration efforts to nickel, cobalt, and manganese rich resources throughout the US and Canada, however has not yet entered into any formal agreements or contracts.

Building strategic partnerships: In 2020, ABTC worked diligently to lay the foundation for future partnerships to secure feedstock and off-take agreements that monetize our unique battery material technology platform at scale. Notably, ABTC was the sole winner of BASF's Circularity Challenge. This was a global competition where BASF challenged companies throughout the world to develop new innovative technologies for the recycling of large format lithium-ion batteries to establish a circular economy in the battery supply chain industries. BASF is one of the largest purchasers of lithium-ion battery metal feedstocks in the US. Through the relationship established through this Circularity Challenge, ABTC and BASF have been exploring several avenues of working together to accelerate the commercialization of this lithium-ion battery recycling technology.

While the ABTC team has been hard at work operationalizing our innovative multi-pronged battery material production platform, the industry broadly continues to grow as well. Growth in demand for lithium-ion batteries is predicted by industry researchers to grow by over ten-fold over the next ten years, while over the same period there are limited announcements for new production sources of domestic US based battery metals, including lithium, nickel, cobalt, or manganese. We expect increased pressure on the prices of domestically sourced battery metals, and increased reliance on foreign sourced battery metals.

These exciting industry trends support and validate our business model to increase the production of domestic US sourced battery metals. We look forward to continuing to grow our business as an industry leader in the closed loop production of the materials that fuel the new energy revolution.

Thank you for being a part of [American Battery Metals Corp.](#), and now- American Battery Technology Company.

[American Battery Metals Corp.](#)

[American Battery Metals Corp.](#) (www.batterymetals.com) (OTCQB:ABML) is an American-owned lithium-ion battery recycling technology and advanced extraction company with extensive mineral resources in Nevada. The company is focused on its lithium-ion battery recycling and resource production projects in Nevada, with the goal of becoming a substantial domestic supplier of battery metals to the rapidly growing electric vehicle and battery storage markets.

For more information, please visit:www.batterymetals.com

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. All statements, other than statements of historical fact, including those with respect to the expected project economics for Western Nevada Basin (Railroad Valley), including estimates of life of mine, average production, cash costs, AISC, initial CAPEX, sustaining CAPEX, pre-tax IRR, pre-tax NPV, net cash flows and recovery rates, the impact of self-mining versus contract mining, the timing to obtain necessary permits, the submission of the project for final investment approval and the timing of initial gold production after investment approval and full financing, metallurgy and processing expectations, the mineral resource estimate, expectations regarding the ability to expand the mineral resource through future drilling, ongoing work to be conducted at the Western Nevada Basin (Railroad Valley), and the potential results of such efforts, the potential commissioning of a Pre-Feasibility study and the effects on timing of the project, are "forward-looking statements." Although the Company's management believes that such forward-looking statements are reasonable, it cannot guarantee that such expectations are, or will be, correct. These forward-looking statements involve a number of risks and uncertainties, which could cause the Company's future results to differ materially from those anticipated. Potential risks and uncertainties include, among others, interpretations or reinterpretations of geologic information, unfavorable exploration results, inability to obtain permits required for future exploration, development or production, general economic conditions and conditions affecting the industries in which the Company operates; the uncertainty of regulatory requirements and approvals; fluctuating mineral and commodity prices, final investment approval and the ability to obtain necessary financing on acceptable terms or at all. Additional information regarding the factors that may cause actual results to differ materially from these forward-looking statements is available in the Company's filings with the Securities and Exchange Commission, including the Annual Report on Form 10-K for the year ended September 30, 2019. The Company assumes no obligation to update any of the information contained or referenced in this press release.

Contact Information

p775-473-4744
info@batterymetals.com

SOURCE: [American Battery Metals Corp.](#)

Dieser Artikel stammt von [Rohstoff-Welt.de](https://www.rohstoff-welt.de)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/364047--American-Battery-Metals-Corp.-Issues-Shareholder-Letter.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer](#)!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinen](#).