

Marimaca Exploration Update: La Atómica Drill Results Confirm Copper Oxide Mineralisation Beyond Marimaca 1-23

13.11.2018 | [GlobeNewswire](#)

VANCOUVER, Nov. 13, 2018 - [Coro Mining Corp.](#) ("Coro" or the "Company") (TSX: COP) is pleased to provide an update for Company's Marimaca project in the Antofagasta region of Chile. The first 28 of a planned 52 drill holes at La Atómica, the ground adjacent to the Marimaca 1-23 claim where a resource has already been established, have confirmed the presence of copper oxide mineralization, in addition to the presence of secondary enriched copper sulphide mineralization at depth.

La Atómica Drill Locations

La Atómica, Looking South

La Atómica RC Rig

Highlights

- Completed 28 of planned 52 holes, for 6,540 metres covering a 100 x 100 metre spaced grid. across the property.
- Results include:
 - LAR 24
From surface, 202 metres continuous oxide mineralization averaging 0.74% CuT, including 16 metres, from 98 to 114 metres, averaging 2.72% CuT, and 12 metres, from 138 to 150 metres, at 2.24% CuT
 - LAR-33
From 32 to 260 metres, 228 metres of continuous oxide mineralization averaging 0.47% CuT, including 26 metres, from 60 to 86 metres, averaging 0.99% CuT. and 20 metres, from 270 to 290 metres, high-grade secondary copper sulphide mineralization averaging 2.10% CuT
- Oxide copper mineralization at La Atómica proven to exist 300 metres beyond limits of the previous drill grid completed at Marimaca 1-23.
- Current knowledge is that the total horizontal extension of the outcropping copper oxide mineralization from Marimaca to La Atómica now reaches 800 metres in the north-west direction, with the opportunity for further extension.

Commenting on the news, Luis Tondo, CEO of Coro said: "Chile is the world's primary source of mineable copper, however, new near surface discoveries are becoming harder to find and new projects harder to bring on stream. Since we discovered Marimaca in 2016, the project continues to prove itself, and I believe has the potential to be one of the best new open-pittable copper oxide deposits discovered in Chile in recent times. Our Phase I program already established a resource at Marimaca and I am delighted to see that the current Phase II program confirms the potential of mineralization extension on the adjacent La Atómica ground."

Further Information

Copper oxide mineralization at La Atómica is hosted by the same intrusive rocks as identified at the Marimaca 1-23 claims. Parallel fracturing is minor as compared with Marimaca, and mineralization is

controlled by a north-west system of faults and by a north to north-east oriented dike-swarm of dioritic composition.

Part of the mineralization appears to be the result of copper laterally transported from sources located close to Marimaca towards the west, along north-west fractures, and trapped by north to north-east fractures and dikes. As a result, the outcropping copper oxide blanket at La Atómica extends for widths of up to 300 metres reaching depths of up to 200 metres, showing less mineralization intensity towards the north-west, yet remains open to the south-west portion of the property.

Figure 1 below illustrates the location of the completed drill holes at Atahualpa and La Atómica and the Phase I drilling which established the resource and the new Phase II drilling extending to the north-west where copper oxide mineralization has been established.

Figure 1:

<http://www.globenewswire.com/NewsRoom/AttachmentNg/0082865d-ec55-4bca-80fd-0c3c60a5d863>

The photographs in figures 2 and 3 below show the southern outlook and RC drilling at La Atómica from which can be seen access roads and some drilling, and importantly, parallel and north west fracturing which is believed to control the copper oxide mineralization.

Figure

<http://www.globenewswire.com/NewsRoom/AttachmentNg/673395ca-2705-4eaa-98bb-0d58830d35a9>

2:

Figure

<http://www.globenewswire.com/NewsRoom/AttachmentNg/062cf7d-eefc-41b8-b7b1-814585d94c12>

3:

Also commenting on the news, Sergio Rivera, VP Exploration said: *"The drill results at La Atómica are the first from the new program and already demonstrate the presence from surface of oxide mineralization and indeed the presence at depth of some secondary sulphide mineralization. We will now continue with the remaining drill holes at La Atómica before moving all drill rigs to Atahualpa where I am hopeful that we will see similar or even potentially better positive results."*

Phase II Program Upcoming Milestones

It is planned that the remaining holes to be drilled at La Atómica will be completed with results announced by the end of the fourth quarter 2018.

Sampling and Assay Protocol

True widths cannot be determined with the information available at this time. Coro RC holes were sampled on a 2 metre continuous basis, with dry samples riffle split on site and one quarter sent to the Andes Analytical Assay preparation laboratory in Calama and the pulps then sent to the same company's laboratory in Santiago for assaying. A second quarter was stored on site for reference. Samples were prepared using the following standard protocol: drying; crushing to better than 85% passing -10#; homogenizing; splitting; pulverizing a 500-700g subsample to 95% passing -150#; and a 125g split of this sent for assaying. All samples were assayed for CuT (total copper), CuS (acid soluble copper), CuCN (cyanide soluble copper) by AAS and for acid consumption. A full QA/QC program, involving insertion of appropriate blanks, standards and duplicates was employed with acceptable results. Pulps and sample rejects are stored by Coro for future reference.

La Atómica Intersections

Hole	Total Depth (m)	From (m)	To (m)	Interval (m)	%CuT	Type
LAR-15 250	including	48	104	56	0.45	Oxide
		48	70	22	0.46	Oxide
		82	104	22	0.61	Oxide
		and	120	152	32	0.35

	50	150	100	0.27	Oxide
LAR-16 250	including 112	150	38	0.35	Oxide
	note 126	134	8		Underground working
	0	92	92	0.39	Oxide
LAR-17 180	including 42	58	16	0.75	Oxide
	72	92	20	0.75	Oxide
	0	86	86	0.46	Oxide
LAR-18 230	including 40	86	46	0.59	Oxide
	note 36	40	4		Underground working
	48	52	4		Underground working
	0	74	74	0.33	Oxide
LAR-19 180	including 12	44	32	0.50	Oxide
	50	74	24	0.26	Oxide
	6	80	74	0.31	Oxide
LAR-20 200	including 12	38	26	0.52	Oxide
	46	62	16	0.24	Oxide
	note 38	46	8		Underground working
LAR-21 150	No significant results				
LAR-22 150	No significant results				
	62	124	62	0.37	Oxide
	including 0	14	14	0.40	Oxide
	70	106	36	0.45	Oxide
	and 146	174	28	0.21	Oxide
	218	308	90	0.48	Enriched-primary
	252	258	6	1.65	Enriched
	256	272	16	0.40	Primary
LAR-23 400	including 272	280	8	1.10	Enriched
	288	298	10	0.52	Enriched
	304	308	4	1.30	Enriched
	308	330	22	0.52	Oxide
	and 332	356	24	0.35	Enriched
	364	398	34	0.51	Enriched
	including 364	372	8	0.51	Enriched
	378	398	20	0.65	Enriched
	0	202	202	0.74	Oxide
	88	94	6	1.21	Oxide
	98	114	16	2.72	Oxide
LAR-24 250	including 118	134	16	1.00	Oxide
	138	150	12	2.24	Oxide
	162	174	12	1.52	Oxide
	and 238	248	10	0.61	Enriched
	12	158	146	0.33	Oxide
LAR-25 250	including 114	122	8	1.96	Oxide
	and 220	242	22	1.43	Oxide
	72	88	16	0.34	Oxide
LAR-26 250	and 100	146	46	0.31	Oxide
	182	188	6	0.55	Oxide
LAR-27 180	84	90	6	0.30	Oxide
	and 116	134	18	0.30	Oxide
LAR-28 200	No significant results				

		74	86	12	0.57	Oxide
LAR-29 200		102	118	16	0.23	Oxide
	and	118	132	14	0.68	Enriched
		168	176	8	0.30	Oxide
LAR-30 150		56	62	6	0.56	Oxide
LAR-31 150		66	78	12	0.31	Oxide
	and	122	138	16	0.27	Oxide
		96	122	26	0.45	Oxide
		26	36	10	0.75	Oxide
	including	60	86	26	0.99	Oxide
		104	118	14	0.70	Oxide
		132	168	36	0.21	Oxide
LAR-32 350	including	152	160	8	0.39	Oxide
		190	238	48	0.20	Oxide
	including	200	208	8	0.41	Oxide
		218	224	6	0.57	Oxide
		262	294	32	0.36	Oxide
	and	300	308	8	0.91	Oxide
		308	314	6	0.46	Mixed
		32	260	228	0.47	Oxide
		132	144	12	0.49	Oxide
	including	172	182	10	0.91	Oxide
		190	210	20	1.83	Oxide
LAR-33 350		134	150	16	1.20	Oxide
		260	270	10	1.40	Mixed
	and	270	290	20	2.10	Enriched
		322	328	6	0.40	Enriched
		336	348	12	0.26	Primary
		26	182	156	0.21	Oxide
LAR-34 350	including	50	84	34	0.28	Oxide
		92	182	90	0.22	Oxide
	and	200	226	26	0.32	Oxide
		230	240	10	0.58	Oxide
LAR-35 210		2	44	42	0.26	Oxide
	and	56	86	30	0.42	Oxide
		12	182	170	0.34	Oxide
		12	44	32	0.26	Oxide
LAR-36 200		56	96	40	0.45	Oxide
	including	96	108	12	0.81	Oxide
		108	122	14	0.25	Oxide
		132	182	50	0.26	Oxide
LAR-37 150	No significant results					
LAR-38 150		20	32	12	0.26	Oxide
	and	62	82	20	0.25	Oxide
		2	16	14	0.27	Oxide
	and	40	50	10	0.45	Oxide
LAR-39 150		56	64	8	0.47	Oxide
		82	126	44	0.35	Oxide
	including	82	96	14	0.62	Oxide
		100	126	26	0.24	Oxide

		0	16	16	0.29	Oxide
		134	142	8	0.44	Oxide
LAR-40 300	and	180	192	12	0.21	Oxide
		226	252	26	0.25	Oxide
		272	276	4	0.38	Mixed
		2	14	12	0.31	Oxide
LAR-41 350	and including	80	186	106	0.23	Oxide
		116	132	16	0.58	Oxide
		28	42	14	0.26	Oxide
LAR-42 270	and	154	166	12	0.25	Oxide
		222	228	6	0.53	Mixed

La Atómica Drill Collars

Hole	Easting	Northing	Elevation	Azimuth	Inclination	Depth
LAR-15	374839.0	7435824.7	1068.0	220	-60	250
LAR-16	374834.5	7435830.8	1067.4	310	-60	250
LAR-17	374771.5	7435958.5	999.5	220	-60	180
LAR-18	374762.1	7435962.1	998.9	310	-60	230
LAR-19	374715.2	7435959.6	996.8	220	-60	180
LAR-20	374712.4	7435965.7	996.3	310	-60	200
LAR-21	374651.9	7436032.9	962.3	220	-60	150
LAR-22	374648.9	7436032.3	962.2	310	-60	150
LAR-23	374864.6	7435723.9	1104.1	220	-60	400
LAR-24	374861.7	7435731.4	1103.8	310	-60	250
LAR-25	374765.2	7435781.1	1076.2	220	-60	250
LAR-26	374764.0	7435786.9	1076.2	310	-60	250
LAR-27	374633.0	7435872.6	1011.0	220	-60	180
LAR-28	374626.4	7435879.2	1010.7	310	-60	200
LAR-29	374580.7	7435928.6	976.8	220	-60	200
LAR-30	374580.9	7435933.8	976.7	310	-60	150
LAR-31	374577.6	7435929.9	976.9	265	-60	150
LAR-32	374782.6	7435647.0	1118.9	220	-60	350
LAR-33	374778.9	7435650.8	1118.8	310	-60	350
LAR-34	374781.0	7435650.1	1119.0	265	-60	350
LAR-35	374583.3	7435799.1	1019.2	220	-60	210
LAR-36	374581.7	7435804.1	1019.0	310	-60	200
LAR-37	374498.8	7435864.1	974.6	220	-60	150
LAR-38	374496.3	7435867.7	974.4	310	-60	150
LAR-39	374577.9	7435877.9	1010.1	265	-60	150
LAR-40	374759.7	7435535.1	1100.3	265	-60	300
LAR-41	374755.7	7435539.9	1099.9	310	-60	350
LAR-42	374702.0	7435589.7	1090.0	220	-60	270

Qualified Persons

The technical information in this news release, including the information that relates to geology, drilling and mineralization of the Marimaca Phase I and II exploration program was prepared under the supervision of, or has been reviewed by Sergio Rivera, Vice President of Exploration, [Coro Mining Corp.](#), a geologist with more than 36 years of experience and a member of the Colegio de Geologos de Chile and of the Institute of Mining Engineers of Chile, and who is the Qualified Person for the purposes of NI 43-101 responsible for the design and execution of the drilling program.

Contact Information

For further information please visit www.coromining.com or contact:
Nicholas Bias, VP Corporate Development & Investor Relations
Office: +56 2 2431 7601
Cell: +44 (0)7771 450 679
Email: nbias@coromining.com

Forward Looking Statements

This news release includes certain “forward-looking statements” under applicable Canadian securities legislation. These statements relate to future events or the Company’s future performance, business prospects or opportunities. Forward-looking statements include, but are not limited to, statements regarding the future development and exploration potential of the Marimaca Project. Actual future results may differ materially. There can be no assurance that such statements will prove to be accurate, and actual results and future events could differ materially from those anticipated in such statements. Forward-looking statements reflect the beliefs, opinions and projections on the date the statements are made and are based upon a number of assumptions and estimates that, while considered reasonable by Coro, are inherently subject to significant business, economic, competitive, political and social uncertainties and contingencies. Many factors, both known and unknown, could cause actual results, performance or achievements to be materially different from the results, performance or achievements that are or may be expressed or implied by such forward-looking statements and the parties have made assumptions and estimates based on or related to many of these factors. Such factors include, without limitation: the inherent risks involved in the mining, exploration and development of mineral properties, the uncertainties involved in interpreting drilling results and other geological data, fluctuating metal prices, the possibility of project delays or cost overruns or unanticipated excessive operating costs and expenses, uncertainties related to the necessity of financing, the availability of and costs of financing needed in the future as well as those factors disclosed in the Company’s documents filed from time to time with the securities regulators in the Provinces of British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, New Brunswick, Nova Scotia, Prince Edward Island and Newfoundland and Labrador. Accordingly, readers should not place undue reliance on forward-looking statements. Coro undertakes no obligation to update publicly or otherwise revise any forward-looking statements contained herein whether as a result of new information or future events or otherwise, except as may be required by law.

Dieser Artikel stammt von Rohstoff-Welt.de

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/313197--Marimaca-Exploration-Update~La-Atmica-Drill-Results-ConfirmCopper-Oxide-Mineralisation-Beyond-Marimaca-1-2>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer](#)!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinen](#).