Environmental and Energy Consumption Footprint of Vanadiumcorp-Electrochem Process Technology

23.11.2017 | CNW

VANCOUVER, Nov. 23, 2017 /CNW/ -

VanadiumCorp Resource Inc. (TSX-V: "VRB") (the "Company") is pleased to announce that it is publishing the results of Environmental Footprint and Energy Consumption Analysis and Comparison of The Vanadiumcorp-Electrochem jointly patent pending technology in addressing the recovery of vanadium from vanadiferous feedstocks. Furthermore, VanadiumCorp-Electrochem Process Technology combined with Electrochem Technologies & Materials Inc. ("Electroc patented iron electrowinning process focuses on the recovery and monetization of the iron metal values representing up the feed in the particular case of titanomagnetite (VTM, magnetite) of various origins and in lesser extent the titania and values

Adriaan Bakker, CEO of VanadiumCorp states, "85% of vanadium is derived from very few magnetite resources in the limited recovery, high cost and a large carbon foot print. Conversely, the new carbon free, high efficiency approach from VanadiumCorp-Electrochem represents maximum transformation of all value add products and vanadium electrolyte di ground source. The current mandate continues to assess global licensing opportunities representing potential cash flor accelerated validation ahead of further patent and resource developments.

According to the World Steel Association in 2016, the worldwide steel production currently totals about 1.6 billion tonne The prevailing Blast furnace process produces pig iron from iron ore using carbon as reductant; the process releases c dioxide to the atmosphere. Production of a tonne of steel generates 1.8 tonnes of CO₂ emissions, according to steel incigures, accounting for as much as 5 percent of the world's total greenhouse-gas emissions. The industry has met little its search for carbon-free methods of manufacturing steel. Steelmaking is one of the world's leading industrial sources of greenhouse gases.

VanadiumCorp and Electrochem have developed a new chemical technology solution in early 2017 that can be both ac integrated into current steel and vanadium operations and constructed as a standalone facility to monetize all value add of various feedstocks, carbon free energy, maximum recovery into high purity products.

Among the two conventional processing routes used industrially, only the smelting/slagging and roasting processes such formerly performed by Highveld in the republic of South Africa and New Zealand Steel in New Zealand were addressing particular issue of full iron recovery. They did produce pig iron containing 1.25 mass percent vanadium first by smelting that was then converted into steel by injecting oxygen into the molten metal yielding a secondary vanadium-rich slag contained as percent V₂O₅ from which vanadium pentoxide was finally extracted by soda ash roasting and hot water lead

However, the energy consumed during the smelting and slagging steps together with the CO² emissions are rather sign our knowledge no detailed life cycle analysis studies are available in the public domain regarding specifically the vanad industry, however it is still possible to have access to reliable data regarding iron and steel making processes such as t published in: Fruehan, R.J.; , Fortoni, O.; Paxton, H.W.; and Brindle, R. (2000) - Theoretical Minimum Energies To Proc for Selected Conditions. - Carnegie Mellon University, Pittsburgh, PA.

From the report, the actual specific energy consumption for producing a steel slab by smelting, steelmaking and hot rol average 22.95 GJ per tonne of steel slab (6.380 MWh/tonne) while the GHGs emission is on average 1.8 tonne of CO² of steel. This latter figure must be compared with 1 tonne of CO² emitted during the production of one tonne of cement.

These numbers confirm the strong negative environmental impact of extracting vanadium pyrometallurgically using the steelmaking route. These numbers do not take into account the specific energy consumption and CO² emissions relate soda ash roasting part of the process. In another report to the USGS [Bleiwas, D.I. (2011)] - Estimates of electricity rec

09.11.2025 Seite 1/2

for the recovery of mineral commodities, with examples applied to sub-Saharan Africa. – US Geological Survey Open-file Report 2011-1253, Reston, VA]: the specific electricity consumption for the production of vanadium pentoxide iron is assessed as 3.000 MWh/tonne. This specific consumption was estimated based on limited data addressing the pig iron to produce vanadium pentoxide products and it includes crushing, grinding, and one or more of the following: ro rotary-kiln, electric-smelting, shaking-ladle, and basic-oxygen-furnace operations.

This should preclude implementation of new smelter capacities especially in jurisdictions were stringent environmental were put in place as most governments agreed worldwide to reduce GHGs by implementing strict CO2 emissions reduced to reduced policies. Moreover, public acceptance towards implementing polluting technologies are at all time low while the trend is green and cost-effective alternatives.

For all these reasons, integrating vertically the carbon and energy free VanadiumCorp-Electrochem chemical technology vanadium, copperas, titania and silica recovery with Electrochem's patented electrochemical technology offers a unique competitive alternative to ironmaking by replacing the carbon reductant with electricity. Specific energy consumption du electrowinning can be as low as 2.900 MWh/tonne of electrolytic iron when operating under certain conditions (Canadia CA 2,717,887 C) while the very low CO₂ emissions would be linked to minor ancillary operations such as steam genera drying. The various specific energy consumptions for each operation unit used in the integrated process are currently a from the flow sheet under assessment at the prototype level during Phase II. These data will be refined further during s will ensure more reliable data to be used as benchmark and for comparison purposes.

In conclusion, the two integrated technologies will be able to offer a highly cost effective and greener alternative to sme roasting in jurisdictions having access to affordable electricity either from hydro or nuclear power.

VanadiumCorp has a simple vision with global implications for many vanadium-titanium-iron resources, with a green pr benefit vanadium batteries for a sustainable future. To facilitate these objectives, the Company is developing new carbo process technology with Electrochem in tandem with development of the Company's 100% owned, vanadium resource Canada.

ON BEHALF OF THE BOARD

Adriaan Bakker, President and Chief Executive Officer

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the Ts Exchange) accepts responsibility for the adequacy or accuracy of this release.

SOURCE VanadiumCorp Resource Inc.

Contact

Vanadiumcorp: By phone: 604-385-4489, By email: ab@vanadiumcorp.com, Website: www.vanadiumcorp.com

Dieser Artikel stammt von Rohstoff-Welt.de

Die URL für diesen Artikel lautet: https://www.rohstoff-welt.de/news/283362--Environmental-and-Energy-Consumption-Footprint-of-Vanadiumcorp-Electrochem-Process-Technology.html

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2025. Es gelten unsere AGB und Datenschutzrichtlinen.

09.11.2025 Seite 2/2