

Arizona Mining Reports High Grade Infill and Step-Out Holes in Feasibility Drilling

09.11.2017 | [GlobeNewswire](#)

VANCOUVER, B.C., Nov. 09, 2017 (GLOBE NEWSWIRE) -- [Arizona Mining Inc.](#) (TSX:AZ) ("Arizona Mining" or the "Company") announces strong results for seven exploration holes from the current drill program focused on expansion of the Taylor Sulfide Zone ("TS") and Taylor Deeps Zone ("TDS") located on its 100%-owned Hermosa Project in Santa Cruz County, Arizona. The drill holes highlighted in this release are successful step-out exploration and infill drill holes highlighting the continued potential for resource growth and increased grades, as distinct from the Preliminary Economic Assessment ("PEA") (see Press Release dated April 3, 2017).

Figure 1. Drill Hole Location Map

Figure 2. Plan View of Taylor Deeps with ZnEq Grade Contour

Figure 3. Long Section of Hermosa Geology and Ore Deposits

"Our exploration drilling continues to expand both the Taylor Sulfide and Taylor Deeps Zones, while the infill drilling is demonstrating great continuity between areas," said Chief Operating Officer Don Taylor. "Although several of the 15 active drills on site are working to acquire necessary geotechnical data for the feasibility study, the balance continue to upgrade both zones. As the resource continues to grow, one impressive aspect of the recent drill results is the continued increase in silver content of the assays, especially in the Taylor Deeps Zone."

HDS-481 is an angle drill hole on the Hardshell claim targeting the extension of the Taylor Sulfide and Taylor Deeps Zones south from the PEA resource outline. The drill hole (which is located out-of-section on Figure 3) is located 120 feet south of the PEA Deeps resource outline and encountered six significant mineralized intervals in the Taylor Sulfide Zone with a cumulative thickness of 469.5 feet (for individual mineralized intervals see Table I). Additionally, the drill intercepted a 53-foot thick section of Taylor Deeps mineralization assaying 6.0% zinc-lead and 2.2 opt silver. Notable intervals include:

- 233 feet assaying 12.6% combined zinc-lead; and 5.5 ounces per ton ("opt") silver (TS)
 - Including 60 feet assaying 18.4% combined zinc-lead; and 13.0 opt silver (TS)
- 53 feet assaying 6.0% combined zinc-lead; and 2.2 opt silver (TDS)

HDS-480 and HDS-483 are vertical drill holes located on the Trench claim block (see Figures 1, 2 and 3). Both drill holes successfully intersected mineralized veins in the overlying volcanics and significant mineralization in the Taylor Deeps Zone. HDS-480 and HDS-483 are located 1,500 and 1,300 feet west of the PEA Deeps resource outline, respectively.

HDS-480 intersected a 256.5-foot thick interval of zinc-lead-silver mineralization in the Taylor Deeps Zone. Notable intersections within the mineralized zone are:

- 31 feet assaying 11.5% combined zinc-lead; and 7.8 opt silver (TDS)
- 30.5 feet assaying 5.4% combined zinc-lead; and 4.4 opt silver (TDS)

HDS-483 intersected an 89-foot thick interval of zinc-lead-silver mineralization in the Taylor Deeps Zone. A

notable intersection within the mineralized zone was:

- 21.5 feet assaying 12.4% combined zinc-lead; and 2.2 opt silver (TDS)

HDS-475 is a vertical drill hole on the Trench Claim block located approximately 500 feet west of the PEA resource outline (see Figures 1, 2 and 3). The hole targeted the extension of the Taylor Deeps Zone. HDS-475 intersected a series of vein-hosted zinc-lead-silver mineralization in the overlying volcanics and an 84.5-foot section in the Taylor Deeps Zone grading 5.1% combined lead-zinc and 2.8 opt silver. Notable assays include:

- 8.5 feet assaying 12.8% combined zinc-lead; and 8.6 opt silver (TVS)
- 84.5 feet assaying 5.2% combined zinc-lead; and 2.8 opt silver (TDS)

HDS-482 is an angle drill hole on the Trench claim targeting the extension of the Taylor Deeps mineralization west from the PEA resource outline. The drill hole encountered two significant veins in the overlying volcanics before intersecting a 179-foot thick interval of continuously mineralized Taylor Deeps Zone. HDS-482 extends the Taylor Deeps mineralization approximately 130 feet west of the previous PEA resource outline. The interval included two notable intercepts, including:

- 18 feet assaying 5.0% combined zinc-lead; and 2.6 opt silver (TDS)
- 29.5 feet assaying 6.9% combined zinc-lead; and 1.4 opt silver (TDS)

HDS-470 is an infill angled drill hole on the northeast corner of the Hardshell claim block. The drill was successful in extending the Taylor Sulfide Zone with a thin interval of high grade zinc-lead-silver mineralization and proved continuity for the Taylor Deeps Zone with an average interval of zinc-lead-silver mineralization. The drill intercepts in HDS-470 are approximately 1,100 feet east from the PEA resource outline. Notable assays include:

- 5 feet assaying 22.0% combined zinc-lead; and 5.5 opt silver (TS)
- 27 feet assaying 7.2% combined zinc-lead; and 4.8 opt silver (TDS)

HDS-455 is a 500-foot step out east of the PEA resource outline and is an angle drill hole targeting the expansion of the Taylor Deeps mineralization north of the Hardshell claim block. The drill hole encountered two mineralized intervals in the Taylor Sulfide Zone with a cumulative thickness of 73 feet (for individual intervals and assays see Table I) and an 88.5-foot thick interval of mineralized Taylor Deeps Zone. This drill hole will expand the resource boundaries for both zones. Notable assays include:

- 50 feet assaying 8.4% combined zinc-lead; and 1.3 opt silver (TS)
- 88.5 feet assaying 3.9% combined zinc-lead; and 1.2 opt silver (TDS)

For a full list of the Trench Vein, Taylor Sulfide and Taylor Deeps Sulfide mineralized intervals from these holes please refer to Table I.

Table I. Drill Hole Assay Summary

DH_ID	From (feet)	To (feet)	Interval (in feet)	From (meters)	To (meters)	Interval (meters)	Ag opt	Pb%	Zn%	Cu%	...
HDS-455 2560	2610	50	780.2	795.5	15.2	1.29	3.05	5.39	0.09	T	
HDS-455 2652	2675	23	808.3	815.3	7.0	0.63	1.59	1.40	0.02	T	
HDS-455 2705	2710	5	824.4	826.0	1.5	2.39	7.96	2.67	0.04	T	
HDS-455 2858.5	2947	88.5	871.2	898.2	27.0	1.21	2.18	1.72	0.07	T	
HDS-470 2476	2481	5	754.6	756.2	1.5	5.45	7.78	14.20	0.02	T	
HDS-470 2560	2587	27	780.2	788.5	8.2	4.79	1.56	5.67	0.05	T	
HDS-475 1204.5	1213	8.5	367.1	369.7	2.6	8.59	8.71	4.12	0.38	T	
HDS-475 1564	1579	15	476.7	481.3	4.6	0.85	1.49	2.78	0.01	T	
HDS-475 3073	3099	26	936.6	944.5	7.9	6.21	6.90	1.98	0.27	T	
HDS-475 3595.5	3680	84.5	1095.9	1121.6	25.8	2.76	4.07	1.09	0.17	T	
HDS-480 260.5	264.5	4	79.4	80.6	1.2	16.51	1.17	1.78	0.24	T	

HDS-480 1087	1091.5	4.5	331.3	332.7	1.4	49.29	2.46	5.75	0.55	T
HDS-480 3536.5	3793	256.5	1077.9	1156.0	78.2	2.60	2.14	1.37	0.36	T
Including 3601	3632	31	1097.5	1107.0	9.4	7.84	5.61	5.89	1.35	T
Including 3694.5	3725	30.5	1126.0	1135.3	9.3	4.35	4.54	0.94	0.27	T
HDS-481 1152	1192	40	351.1	363.3	12.2	0.87	2.37	4.20	0.09	T
HDS-481 1357	1590	233	413.6	484.6	71.0	5.45	8.17	4.35	1.68	T
Including 1357	1417	60	413.6	431.9	18.3	13.01	14.86	3.45	0.28	T
HDS-481 1755.5	1786.5	31	535.1	544.5	9.4	1.00	2.31	3.30	0.19	T
HDS-481 2271	2395	124	692.2	730.0	37.8	0.44	1.07	1.58	0.03	T
HDS-481 2485.5	2512	26.5	757.5	765.6	8.1	0.51	1.51	1.45	0.04	T
HDS-481 2902	2917	15	884.5	889.1	4.6	10.40	0.83	1.06	0.16	T
HDS-481 2984	3037	53	909.5	925.6	16.2	2.15	5.45	0.55	0.01	T
HDS-482 1135	1152	17	345.9	351.1	5.2	1.14	1.92	2.58	0.01	T
HDS-482 1635	1638	3	498.3	499.2	0.9	42.88	7.52	3.61	2.97	T
HDS-482 3566.5	3745.5	179	1087.0	1141.6	54.6	0.78	1.10	0.96	0.09	T
Including 3566.5	3584.5	18	1087.0	1092.5	5.5	2.57	2.50	2.48	0.24	T
Including 3716	3745.5	29.5	1132.6	1141.6	9.0	1.35	3.89	2.96	0.04	T
HDS-483 865.5	870	4.5	263.8	265.2	1.4	8.20	13.75	6.96	0.11	T
HDS-483 3610.5	3617.5	7	1100.4	1102.6	2.1	2.37	10.03	6.43	0.36	T
HDS-483 3676.5	3696	19.5	1120.5	1126.5	5.9	2.98	3.65	3.21	1.04	T
HDS-483 3961	4050	89	1207.3	1234.4	27.1	1.38	2.02	2.17	0.08	T
Including 3996	4017.5	21.5	1217.9	1224.5	6.6	2.15	6.18	6.24	0.16	T

Drill intersections with a combined zinc and lead grade of greater than 9% are bolded. Sulfide drill intervals from the Taylor Sulfide Zone and Taylor Deep Sulfide Zone are down-the-hole drill intervals. Vertical drill holes are considered to be within +5% of true width based on the dip of the mineralized stratigraphy at 20-25 degrees. Angle drill holes are considered to be within +15% of true width based on the dip of the mineralized stratigraphy at 20-25 degrees. The exception to this are the intervals noted as veins. It is not possible to determine the true width of the veins based on the drill density and no representation is made here regarding true width of the veins. Zones shown include: Taylor Sulfide Zone (TS); Taylor Deep Sulfide Zone (TDS) and Trench Vein System (TVS).

Figure 1. Drill Hole Location Map is available at
<http://www.globenewswire.com/NewsRoom/AttachmentNg/6eb1a3a3-2163-4e4c-82d0-95cee5e92c86>

Figure 2. Plan View of Taylor Deep with ZnEq Grade Contour is available at
<http://www.globenewswire.com/NewsRoom/AttachmentNg/0877d063-ec25-4273-8a91-f912ce921596>

Figure 3. Long Section of Hermosa Geology and Ore Deposits is available at
<http://www.globenewswire.com/NewsRoom/AttachmentNg/a4204aff-ab6c-4a19-a503-a44c7017003e>

Qualified Person

The results of the [Arizona Mining Inc.](#) drilling have been reviewed, verified and compiled by Donald R. Taylor, MSc., PG, Chief Operating Officer for [Arizona Mining Inc.](#), a qualified person as defined by National Instrument 43-101 (NI 43-101). Mr. Taylor has 30 years of mineral exploration and mining experience, and is a Registered Professional Geologist through the SME (registered member #4029597).

Assays and Quality Assurance/Quality Control

To ensure reliable sample results, the Company has a rigorous QA/QC program in place that monitors the chain-of-custody of samples and includes the insertion of blanks, duplicates, and certified reference standards at statistically derived intervals within each batch of samples. Core is photographed and split in

half with one-half retained in a secured facility for verification purposes.

Sample preparation (crushing and pulverizing) has been performed at ALS Minerals Laboratories, an ISO/IEC accredited lab located in Tucson, Arizona. ALS Minerals Laboratories prepares a pulp of all samples and sends the pulps to their analytical laboratory in Vancouver, B.C. Canada for analysis. ALS analyzes the pulp sample by ICP following a 4-acid digestion (ME-ICP61 for 33 elements) including Cu (copper), Pb (lead), and Zn (zinc). All samples in which Cu (copper), Pb (lead), or Zn (zinc) are greater than 10,000 ppm are re-run using four acid digestion with an ICP – AES finish (Cu-OG62; Pb-OG62; and Zn-OG62) with the elements reported in percentage (%). Silver values are determined by ICP (ME-ICP61) with all samples with silver values greater than 100 ppm repeated using four acid digestion with an ICP-AES finish (Ag-OG62) calibrated for higher levels of silver contained. Any values over 1,500 ppm Ag trigger a fire assay with gravimetric finish analysis. Gold values are determined by a 30 gm fire assay with an ICP-AES finish (Au-ICP21).

About Arizona Mining

[Arizona Mining Inc.](#) (an augustagroup company) is a mineral exploration and development company focused on the exploration and development of its 100%-owned Hermosa Project located in Santa Cruz County, Arizona. The Taylor Deposit, a zinc-lead-silver carbonate replacement deposit, has a resource of 8.6 million tons in the Measured Mineral Resource category grading 4.2% zinc, 4.0% lead and 1.6 opt silver, or 9.7% ZnEq, plus 63.8 million tons in the Indicated Mineral Resource category grading 4.5% zinc, 4.4% lead and 1.9 opt silver, or 10.6% ZnEq, and 38.6 million tons of Inferred Mineral Resources grading 4.4% zinc, 4.2% lead and 3.1 opt silver or 11.6% ZnEq, all reported in accordance with NI 43-101 guidelines utilizing a 4% ZnEq cutoff grade. The Taylor Deposit remains open to the north, west and south over land controlled by the Company and will be aggressively drilled to test the limits of the resource. The Company’s other project on the Hermosa property is the Central Deposit, a silver-manganese manto oxide project.

For additional information please contact:

Jerrold Annett
Senior Vice President, Corporate Development
Telephone: 416-366-5678 ext. 207
Email: jannett@arizonamining.com

Susan Muir
Vice President, Investor Relations & Corporate Communications
Telephone: 416-366-5678 ext. 202
Email: smuir@arizonamining.com

Cautionary Note Regarding Forward-Looking Information

Certain information contained in this press release constitutes forward-looking statements. All statements, other than statements of historical facts, are forward looking statements including statements with respect to the Company’s intentions for its Hermosa Project in Arizona, including, without limitation, performing additional drilling, a resource update, permitting and a feasibility study on the Taylor Deposit. Forward-looking statements are often, but not always, identified by the use of words such as may, will, seek, anticipate, believe, plan, estimate, budget, schedule, forecast, project, expect, intend, or similar expressions.

The forward-looking statements are based on a number of assumptions which, while considered reasonable by Arizona Mining, are subject to risks and uncertainties. In addition to the assumptions herein, these assumptions include the assumptions described in Arizona Mining's management's discussion and analysis for the year ended December 31, 2016 ("MD&A"). Arizona Mining cautions readers that forward-looking statements involve and are subject to known and unknown risks, uncertainties and other factors which may cause actual results, performance or achievements to differ materially from those expressed in or implied by such forward-looking statements and forward-looking statements are not guarantees of future results, performance or achievement. These risks, uncertainties and factors include general business, economic, competitive, political, regulatory and social uncertainties; actual results of exploration activities and economic evaluations; fluctuations in currency exchange rates; changes in project parameters; changes in costs, including labour, infrastructure, operating and production costs; future prices of zinc, lead, silver and other minerals; variations of mineral grade or recovery rates; operating or technical difficulties in connection with

exploration, development or mining activities, including the failure of plant, equipment or processes to operate as anticipated; delays in completion of exploration, development or construction activities; changes in government legislation and regulation; the ability to maintain and renew existing licenses and permits or obtain required licenses and permits in a timely manner; the ability to obtain financing on acceptable terms in a timely manner; contests over title to properties; employee relations and shortages of skilled personnel and contractors; the speculative nature of, and the risks involved in, the exploration, development and mining business; and the factors discussed in the section entitled "Risks and Uncertainties" in the MD&A.

Although Arizona Mining has attempted to identify important risks, uncertainties and other factors that could cause actual performance, achievements, actions, events, results or conditions to differ materially from those expressed in or implied by the forward-looking information, there may be other risks, uncertainties and other factors that cause performance, achievements, actions, events, results or conditions to differ from those anticipated, estimated or intended. Unless otherwise indicated, forward-looking statements contained herein are as of the date hereof and Arizona Mining disclaims any obligation to update any forward-looking statements, whether as a result of new information, future events or results or otherwise, except as required by applicable law.

Dieser Artikel stammt von [Rohstoff-Welt.de](https://www.rohstoff-welt.de)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/281874--Arizona-Mining-Reports-High-Grade-Infill-and-Step-Out-Holes-in-Feasibility-Drilling.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzzrichtlinen](#).