The 126.2m intercept in DS16-08 increased from 3.95 g Au/t to 4.07 g Au/t	

VANCOUVER, BRITISH COLUMBIA--(Marketwired - Apr 18, 2017) - Gold Standard Ventures Corp. (TSX VENTURE:GSV)(NYSE MKT:GSV) ("Gold Standard" or the "Company") reported today favorable results from a check assay program for the North and Main Dark Star deposits on its 100%-owned/controlled Railroad-Pinion Project in Nevada's Carlin Trend.

A comprehensive assay check (umpire) program was completed by ALS Chemex (ALS) on original drill hole sample pulps from the Company's 2015 and 2016 drilling at the Main and North Dark Star deposits which had reported values at or above the 0.14 g Au/t cut-off grade established in the NI 43-101 resource estimate announced on March 3, 2015 (see news release). In total, ALS assayed 1,838 drill sample pulps from 37 drill holes distributed throughout the North and Main Dark Star deposits using the Au-AA23 method. ALS assays confirmed, verified and, in certain instances, increased the gold grade from the original Bureau Veritas (BV) gold fire assays.

Additionally, metallurgical core holes DS16-17 and DS16-20 were completed at the Main Dark Star deposit to provide samples for column leach testing.

Jonathan Awde, CEO and Director of Gold Standard commented: "We are quickly moving ahead with our plans to support a premium valuation for the Dark Star area. This thorough check assay program is an important step towards preparing a new resource estimate for the Dark Star area which will include the most recent drilling at Main Dark Star and North Dark Star. Our drilling last year established that these two deposits connect and we therefore expect the new resource estimate will report a total for greater Dark Star. At the same time, we are proceeding with more advanced metallurgical testing following last week's positive announcement on the cyanide solubility of Dark Star oxide gold mineralization."

Key Highlights

- The check assay program indicated that BV fire assays were biased slightly lower than the ALS check fire assays. The
 ALS results increase the gold grades of several significant, previously released North and Main Dark Star drill hole
 intercepts by 2 to 5%. ALS gold fire assays will be used in the upcoming Main and North Dark Star resource estimate
 scheduled for completion in May 2017.
- Notable gold grade increases include: DS16-08 increased from 3.95g Au/t to 4.07 g Au/t over 126.2m, DS16-24 increased from 3.16g Au/t to 3.34g Au/t over 97.3m, and DS15-11 increased from 1.51 g Au/t to 1.59 g Au/t over 157.0m.
- Additional check fire assays were completed on selected holes by a third lab, SGS Canada Inc. (SGS). SGS completed
 check assays on 195 pulp samples from mineralized intervals in drill holes DS15-10, DS16-03B and DS16-08 using the
 FAA313 method. The SGS check fire assay results confirmed the ALS check fire assay results and a low BV bias.
- PQ-size metallurgical core holes DS16-17 and DS16-20 were drilled into the Main Dark Star resource, intersecting 112.5m of 0.69g Au/t and 72.2m of 0.51 g Au/t respectively, in pervasively oxidized and altered middle debris flow conglomerate in the favorable Pennsylvanian-Permian host section. The core holes also intersected higher grade gold zones including 11.9m of 1.20 g Au/t in DS16-07 and 15.2m of 1.37 g Au/t in DS16-20. Material from these intercepts is being used for column leach testing at Kappes, Cassiday & Associates in Reno, NV, under the guidance of Gold Standard's metallurgical consultant Gary Simmons.

The check gold fire assay program was guided by Phillip J. Allen (consulting geochemist to Gold Standard) and Gary Simmons (consulting metallurgist to Gold Standard).

North and Main Dark Star drill results and check assay results are as follows (higher values are in bold):

Drill Hole	Method	Az.	Incl.		Intercept		BV Grade (g Au/t)	ALS Grade (g Au/t)	Percent Change	
					(m)	(m)	,	,	Change	
DS15-01 ⁽¹⁾	RC	270	-85	239.3	24.4 - 41.2	16.8	0.17	0.17	0	%
					82.3 - 86.9	4.6	0.15	0.16	+6.6	%
					100.6 - 108.2	7.6	0.37	0.38	+2.7	%
					163.1 - 167.7	4.6	0.20	0.20	0	%
DS15-02 ⁽¹⁾	RC	090	-80	312.5	4.5 - 7.6	3.1	0.49	0.50	+2.0	%
					143.2 - 146.3	3.1	0.15	0.16	+6.6	%
DS15-03 ⁽¹⁾	RC		-90	336.9	1.5 - 7.6	6.1	0.23	0.27	+17.4	%
					13.7 - 45.7	32.0	0.58	0.65	+12.0	%
Including					33.5 - 42.6	9.1	1.09	1.19	+9.2	%
					166.1 - 176.8	10.7	0.18	0.18	0	%
					201.2 - 222.5	21.3	1.90	1.93	+1.6	%
Including					201.2 - 213.4	12.2	3.13	3.17	+1.3	%
					228.6 - 233.2	4.6	0.15	0.17	+13.3	%
					234.7 - 236.2	1.5	0.15	0.15	0	%

			243.9 - 275.9 32.0	0.40	0.40	0	%
DS15-04 ⁽¹⁾	RC	090 -60	336.9 3.0 - 7.6 4.6	0.15	0.16	+6.6	%
			10.7 - 22.9 12.2	0.28	0.29	+3.6	%
DS15-05 ⁽¹⁾	RC	090 -70	343.0 32.0 - 36.6 4.6	0.19	0.23	+21.1	%
			39.6 - 41.1 1.5	0.19	0.22	+15.8	%
			51.8 - 60.9 9.1	0.17	0.18	+5.9	%
			256.1- 271.3 15.2	0.62	0.61	-1.6	%
Including			256.1 - 260.7 4.6	1.30	1.26	-3.1	%
DS15-06 ⁽²⁾	RC	090 -80	349.1 67.0 - 73.1 6.1	0.16	0.15	-6.3	%
			96.0 - 99.1 3.1	0.25	0.23	-8.0	%
			115.8 - 128.0 12.2	0.18	0.19	+5.6	%
			187.5 - 262.2 74.7	0.58	0.57	-1.7	%
Including			230.2 - 262.2 32.0	1.07	1.03	-3.7	%
			309.5 - 323.2 13.7	0.72	0.72	0	%
DS15-07 ⁽²⁾	RC	-90	391.8 233.2 - 240.8 7.6	1.02	1.20	+17.6	%
DS15-09 ⁽²⁾	RC	060 -52	2 489.3 9.1 - 13.7 4.6	0.16	0.15	-6.3	%
			16.8 - 24.4 7.6	0.16	0.15	-6.3	%
			36.6 - 65.6 29.0	0.73	0.76	+4.1	%
Including			38.1 - 45.7 7.6	1.70	1.79	+5.3	%
			195.1 - 225.6 30.5	0.35	0.36	+2.9	%
			234.8 - 236.3 1.5	0.16	0.15	-6.3	%
DS15-10 ⁽²⁾	RC	090 -50	460.4 216.5 - 231.7 149.4	1.38	1.45	+5.1	%
Including			221.0 - 231.7 10.7	1.84	1.84	0	%
Including			271.3 - 312.5 41.2	2.10	2.12	+1.0	%
Including			320.1 - 346.0 25.9	1.88	2.05	+9.0	%
J			399.3 - 417.6 18.3	0.84	0.85	+1.2	%
Including			400.9 - 404.0 3.1	2.55	2.49	-2.4	%
DS15-11 ⁽³⁾	RC	090 -55	5 341.5 47.2 - 50.3 3.1	0.15	0.17	+13.3	%
			103.7 - 260.7 157.0	1.51	1.59	+5.3	%
Including			105.2 - 126.5 21.3	3.17	3.53	+11.4	%
Including			132.6 - 143.3 10.7	1.99	2.10	+5.5	%
Including			160.0 - 170.7 10.7	1.98	2.10	+6.0	%
Including			178.4 - 218.0 39.6	2.29	2.28	-0.4	%
morading			275.9 - 303.3 27.4	0.37	0.39	+5.4	%
			312.5 - 341.5 29.0	0.52	0.57	+9.6	%
DS15-12 ⁽⁴⁾	RC	090 -75	5 580.8 21.3 - 27.4 6.1	0.42	0.44	+4.8	%
DS15-13 ⁽⁴⁾			3 427.4 88.4 - 92.4 4.0	0.18	0.18	0	%
DO10 10()	0010	000 00	101.0 - 104.5 3.5	0.14	0.14	0	%
			109.7 - 125.1 15.4	1.85	1.87	+1.1	%
Including			115.8 - 120.5 4.7	5.21	5.27	+1.2	%
including			142.7 - 144.0 1.3	0.23	0.23	0	%
			149.0 - 246.0 97.0	1.61	1.56	-3.1	%
Including			173.0 - 233.5 60.5	2.23	2.23	0	%
DS16-01 ⁽⁶⁾	Core	090 -45	5 532.6 150.9 - 155.3 4.4	0.17	0.18	+5.9	%
D310-01(*)	Cole	030 -43	200.6 - 201.2 0.6	0.17	0.10	+2.8	%
			223.6 - 225.6 2.0	0.20	0.37	+20.0	%
			231.1 - 236.0 4.9	0.20	0.24	+13.3	%
						-78.3	% %
			250.7 - 251.7 1.0	0.23	0.05	-76.3 0	% %
			255.8 - 260.2 4.4	0.14	0.14		
			264.5 - 266.0 1.5	0.32	0.35	+9.4	%
D046 00(5)	Core	000 45	269.1 - 272.0 2.9	0.17	0.19	+11.8	% %
DS16-02 ⁽⁵⁾	Core	U9U -45	5 285.1 11.0 - 13.4 1.5	0.15	0.15	0	%
			33.5 - 37.5 4.0	0.45	0.45	0	%
			42.8 - 52.1 9.3	0.50	0.62	+24.0	%
			100.0 - 102.0 2.0	0.18	0.18	0	%
la de P			107.9 - 131.1 23.2	0.72	0.73	+1.4	%
Including	DO	000 15	123.4 - 128.0 4.6	1.80	1.84	+2.2	%
DS16-03	RC	090 -45	5 89.9 79.3 - 90.0 10.7	0.79	0.80	+1.3	%

DS16-03B ⁽⁶) RC/Core	- 000 -45	A15 2 53 3	- 5/1 8	1.5	0.15	0.17	+13.3	%
DO 10 00D	/ 100/0010	3 030 43		- 65.5	4.6	0.13	0.22	+4.8	%
				- 95.1	12.8	0.37	0.40	+8.1	%
				- 98.2	1.2	0.78	0.84	+7.7	%
				5 - 202.7		1.50	1.54	+2.7	%
Including				8 - 181.1		2.87	2.94	+2.4	%
Including									
				3 - 226.2 3 - 347.9		0.24	0.23	-4.2	% %
laaludiaa						0.50	0.53	+6.0	
Including				3 - 320.4		1.79	1.89	+5.6	%
				4 - 367.7		0.25	0.26	+4.0	%
DO40 05(5)	0	000 55		1 - 372.5		0.15	0.16	+6.7	%
DS16-05 ⁽⁵⁾	Core	090 -55	384.8 3.6		1.2	0.17	0.17	0	%
				10.6	3.3	0.19	0.19	0	%
				- 34.0	1.7	0.17	0.17	0	%
				- 44.5	5.9	0.18	0.20	+11.1	%
				- 50.6	1.5	0.16	0.17	+6.3	%
				- 55.7	2.7	0.17	0.18	+5.9	%
				- 71.9	4.5	0.25	0.26	+4.0	%
				- 81.4	2.9	0.16	0.19	+18.8	%
				- 97.4	11.4	0.21	0.22	+4.8	%
				4 - 182.6		0.20	0.21	+5.0	%
				4 - 189.1		0.15	0.15	0	%
				2 - 200.3		0.17	0.16	-5.9	%
				5 - 218.9		0.44	0.47	+6.8	%
				6 - 249.7		1.28	1.29	+0.8	%
5.0 (5.0 (0)				5 - 258.2		0.38	0.37	-2.6	%
DS16-06 ⁽⁹⁾	RC		391.8 118.			0.17	0.19	+11.8	%
DS16-07 ⁽⁹⁾	RC	-90	452.7 154.			1.08	1.08	0	%
				7 - 208.8		0.56	0.57	+1.8	%
Including				5 - 195.1		1.08	1.11	+2.7	%
				9 - 218.0		0.19	0.20	+5.3	%
				6 - 254.6		0.67	0.71	+5.9	%
				7 - 283.5		0.28	0.31	+10.7	%
				8 - 318.6		0.54	0.55	+1.9	%
				7 - 330.8		0.25	0.26	+4.0	%
				4 - 341.5		0.15	0.15	0	%
				0 - 352.1		0.26	0.26	0	%
				7 - 364.3		0.56	0.56	0	%
DC4C 00(5)	0	000 45		9 - 385.7		0.91	0.95	+4.4	%
DS16-08 ⁽⁵⁾	Core	090 -45	408.8 76.3		0.5	0.30	0.01	-96.6	%
				93.0	4.0	0.23	0.22	-4.3	%
				9 - 107.3		0.46	0.47	+2.2	%
				1 - 112.5		0.47	0.58	+23.4	%
				0 - 135.3		0.67	0.79	+17.9	%
				8 - 154.4		0.16	0.18	+12.5	%
				2 - 159.6		0.22	0.24	+9.1	%
الممانيطانيم				2 - 291.4		3.95	4.07	+3.0	%
Including Including				6 - 223.6 0 - 264.9		4.70 5.60	4.85 5.68	+3.2 +1.4	% %
Including				0 - 204.8 0 - 282.9		10.70	10.89	+1.8	% %
including				4 - 338.7		0.45	0.47	+4.4	% %
				7 - 355.8 1 - 362.5		0.43 0.20	0.43 0.20	0	% %
DS16-10 ⁽⁹⁾	RC	305.70	397.9 39.6			0.20	0.20	+5.9	% %
ריין די	NO	505-70		- 44.2 - 105.2		0.17	0.16	+5.9 +1.6	% %
Including				- 74.7	7.6	1.22	1.23	+0.8	% %
moraumy				- 74.7 3 - 176.8		0.48	0.52	+8.3	% %
				9 - 189.0		0.48	0.16	+14.3	%
			102			J	50		,0

			254.6 - 269.8 15.2	0.27	0.31	+14.8	%
DS16-11 ⁽⁹⁾	RC	090 -55	458.8 106.7 - 111.3 4.6	0.40	0.46	+15.0	%
DS16-17	Core	090 -75	219.5 27.7 - 140.2 112.5		0.69	-	
Including			43.3 - 55.2 11.9		1.20	-	
Including			108.8 - 114.0 5.2		1.18	-	
Including			125.8 - 130.2 4.4		2.28	-	
DS16-18 ⁽¹⁰⁾	Core	090 -50	107.0 0.3 - 73.2 72.9	1.02	1.08	+5.9	%
Including			35.2 - 47.2 12.0	2.24	2.32	+3.6	%
Including			59.6 - 71.6 12.0	1.83	1.80	-1.6	%
DS16-19 ⁽⁹⁾	RC	-90	618.9 228.6 - 233.2 4.6	0.21	0.21	0	%
			236.3 - 237.8 1.5	0.53	0.53	0	%
			240.8 - 243.9 3.1	0.16	0.17	+6.3	%
			272.9 - 282.0 9.1	0.21	0.23	+9.5	%
			292.7 - 297.3 4.6	0.18	0.18	0	%
			306.4 - 307.9 1.5	0.24	0.26	+8.3	%
			324.6 - 327.7 3.1	0.17	0.16	-5.9	%
			330.8 - 338.4 7.6	0.17	0.10	0	%
DS16-20	Core	000 -72	229.6 4.0 - 76.2 72.2	0.21	0.51	-	70
Including	Core	030 -12	48.0 - 63.2 15.2		1.37	-	
including			80.9 - 84.0 3.1		0.55	-	
						-	
			91.6 - 93.4 1.8		0.60	-	
			97.9 - 99.4 1.5		0.17	-	
DO40 04/7)	•	000 45	110.5 - 112.8 2.3	0.00	1.69	-	0./
DS16-21 ⁽⁷⁾	Core	090 -45	453.7 16.6 - 20.4 3.8	0.23	0.22	-4.3	%
			38.6 - 94.8 56.2	1.83	1.82	-0.6	%
Including			62.2 - 68.0 5.8	2.74	2.80	+2.2	%
Including			73.7 - 83.5 9.8	3.78	3.81	+0.8	%
			128.3 - 135.5 7.2	0.41	0.45	+9.8	%
			154.6 - 156.1 1.5	0.19	0.20	+5.2	%
			208.2 - 209.1 0.9	0.14	0.17	+21.4	%
			226.1 - 229.9 3.8	0.15	0.16	+6.7	%
DS16-22 ⁽⁹⁾	RC	090 -55	434.5 6.1 - 7.6 1.5	0.70	0.73	+4.3	%
			102.1 - 106.7 4.6	0.16	0.16	0	%
			118.9 - 131.1 12.2	0.16	0.17	6.3	%
			149.4 - 150.9 1.5	0.17	0.19	+11.8	%
			164.6 - 166.1 1.5	0.14	0.15	+7.1	%
			173.8 - 178.4 4.6	0.15	0.18	+20.0	%
			182.9 - 192.0 9.1	0.37	0.45	+21.6	%
DS16-24 ⁽⁸⁾	Core	090 -60	423.2 104.5 - 114.0 9.5	0.16	0.16	0	%
			119.8 - 136.9 17.1	0.41	0.41	0	%
			143.3 - 144.5 1.2	0.30	0.30	0	%
			152.4 - 161.5 9.1	0.28	0.28	0	%
			171.6 - 175.7 4.1	0.33	0.33	0	%
			180.8 - 278.1 97.3	3.16	3.34	+5.7	%
Including			203.9 - 214.0 10.1	4.02	4.17	+3.7	%
Including			225.9 - 275.0 49.1	4.62	4.88	+5.6	%
Also Includi	ng		262.5 - 275.0 12.5	6.09	6.37	+4.6	%
DS16-26 ⁽¹⁰⁾	Core	270 -70	536.3 187.2 - 225.3 38.1	0.73	0.72	-1.4	%
Including			203.9 - 208.5 4.6	2.61	2.50	-4.2	%
J			231.4 - 263.0 31.6	0.49	0.46	-6.1	%
			274.1 - 326.2 52.1	1.04	1.02	-1.9	%
Including			291.8 - 298.5 6.7	2.03	1.86	-8.4	%
Including			306.3 - 322.2 15.9	2.00	2.01	+0.5	%
			386.9 - 388.0 1.1	0.19	0.19	0	%
DS16-27 ⁽⁸⁾	Core	090 -75	389.6 67.4 - 69.7 2.3	0.21	0.23	+9.5	%
	23.3		77.7 - 80.1 2.4	0.16	0.18	+12.5	%
			93.0 - 94.2 1.2	0.19	0.10	+5.3	%
			98.5 - 101.2 2.7	0.15	0.20	+33.3	%
			00.0 101.2 2.1	5.10	5.20	. 00.0	70

		108.8 - 110.	113	0.20	0.20	0	%
		114.6 - 153.0		0.72	0.87	+20.8	%
Including		136.9 - 144.		1.49	1.79	+20.1	%
DS16-28 ⁽¹⁰⁾ Core	045 -45	579.9 5.2 - 7.0	1.8	0.25	0.28	+12.0	%
DS16-31 ⁽¹⁰⁾ Core		430.3 62.8 - 64.3	1.5	0.23	0.25	+8.7	%
		67.7 - 70.3	2.6	0.17	0.15	-11.8	%
		84.8 - 86.0	1.2	0.26	0.28	+7.7	%
		103.0 - 107.3		0.22	0.25	+13.6	%
		118.0 - 135.		0.40	0.41	+2.5	%
DS16-32 ⁽¹⁰⁾ Core	090 -45	566.5 69.8 - 71.8	2.0	0.15	0.16	+6.7	%
DS16-33 ⁽¹⁰⁾ Core		595.1 69.2 - 92.5	23.3	0.28	0.27	-3.6	%
		104.3 - 105.8	3 1.5	0.17	0.17	0	%
		113.4 - 116.	5 3.1	0.22	0.19	-13.6	%
		121.0 - 126.8	3 5.8	0.24	0.25	+4.2	%
		130.2 - 152.0	21.8	0.35	0.36	+2.9	%
		164.3 - 197.4	4 33.1	0.62	0.61	-1.6	%
Including		169.2 - 174.	1 4.9	1.00	0.99	-1.0	%
Including		177.4 - 182.9	9 5.5	1.09	1.06	-2.8	%
		206.7 - 220.	7 14.0	0.76	0.78	+2.6	%
Including		212.5 - 219.5	2 6.7	1.13	1.16	+2.7	%
DS16-34 ⁽¹⁰⁾ Core	090 -60	456.9 275.2 - 276.	7 1.5	0.21	0.23	+9.5	%
DS16-36 ⁽¹⁰⁾ Core	090 -60	454.3 156.4 - 158.8	3 2.4	0.17	0.18	+5.9	%
DS16-37 ⁽¹⁰⁾ Core	090 -80	514.9 8.2 - 9.4	1.2	0.18	0.21	+16.7	%
		84.5 - 87.2	2.7	0.17	0.17	0	%
		176.7 - 179.0	5 2.9	0.23	0.23	0	%
DS16-38 ⁽¹⁰⁾ RC	270 -72	519.8 196.6 - 202.	7 6.1	0.22	0.22	0	%
		219.5 - 243.9	9 24.4	2.03	2.11	+3.9	%
Including		228.6 - 239.3	3 10.7	3.62	3.71	+2.5	%
		394.8 - 396.3	3 1.5	0.36	0.38	+5.5	%
		405.5 - 413.		0.24	0.25	+4.2	%
		416.2 - 436.0	19.8	0.36	0.38	+5.5	%

^{*} Gold intervals reported in this table were calculated using a 0.14 g Au/t cutoff. Weighted averaging has been used to calculate all reported intervals. True widths are estimated at 70-95% of drilled thicknesses.

- (1) see news release dated July 28, 2015
- (2) see news release dated November 4, 2015
- (3) see news release dated November 10, 2015 (4) see news release dated January 21, 2016
- (5) see news release dated August 9, 2016
- see news release dated August 18, 2016
- (7) see news release dated September 14, 2016 (8) see news release dated October 13, 2016
- (9) see news release dated October 20, 2016
- (10) see news release dated January 19, 2017

Sampling Methodology, Chain of Custody, Quality Control and Quality Assurance:

All original sampling was conducted under the supervision of the Company's project geologists and the chain of custody from the drill to the sample preparation facility was continuously monitored. Core was cut at the company's facility in Elko and one quarter was sent to the lab for analysis and the remaining core retained in the original core box. A pulp-blank or certified reference material was inserted approximately every tenth sample. The Dark Star core samples were delivered to Bureau Veritas Mineral Laboratories preparation facility in Elko, NV. The samples are crushed, pulverized and sample pulps are shipped to Bureau Veritas certified laboratory in Sparks, NV or Vancouver, BC. Pulps are digested and analyzed for gold using fire assay fusion and an atomic absorption spectroscopy (AAS) finish on a 30 gram split. Data verification of the analytical results includes a statistical analysis of the standards and blanks that must pass certain parameters for acceptance to insure accurate and verifiable results.

Original pulps for the check assay program were delivered to the ALS certified lab in Sparks, NV, where the pulps were digested and analyzed for gold using fire assay fusion and an atomic absorption spectroscopy (AAS) finish on a 30 gram split (Au-AA23 method and the Au-GRA21 method for those samples that were over 10 g Au/t requiring a gravimetric finish). Following the ALS fire assays, the original sample pulps from mineralized zones in DS15-10, DS16-03B and DS16-08 were shipped to SGS certified lab in Burnaby, BC where the pulps were digested and analyzed for gold using fire assay fusion and an atomic absorption spectroscopy (AAS) finish on a 30 gram split (FAA313 method and the FAG303 method for those samples that were over 10 g Au/t requiring a gravimetric finish).

chain of custody from the project to the sample preparation facility was continuously monitored. Core was cut at the company's facility in Elko and one quarter was sent to the lab for analysis and the remaining core retained in the original core box. A pulp-blank or certified reference material was inserted approximately every tenth sample. The samples were delivered to ALS preparation facility in Elko, NV where they were crushed and pulverized. Resulting sample pulps were shipped to ALS certified laboratory in Sparks, NV or Vancouver, BC. Pulps were digested and analyzed for gold using fire assay fusion and an atomic absorption spectroscopy (AAS) finish on a 30 gram split. All other elements were determined by ICP analysis. Data verification of the analytical results included a statistical analysis of the standards and blanks that must pass certain parameters for acceptance to insure accurate and verifiable results.

Gold Standard's disclosure of check assay data in this press release has been reviewed and approved by: Phillip J. Allen, geochemical consultant to Gold Standard, and a Qualified Person under the definition of NI 43-101, *Standards of Disclosure for Mineral Projects*. Gary Simmons, metallurgical consultant to Gold Standard and a Qualified Person under the definition of NI 43-101, *Standards of Disclosure for Mineral Projects*. Mr. Simmons is a Qualified Professional Member of the Mining and Metallurgical Society of America with special expertise in Metallurgy, QP Member Number 101013.

Disclosure of additional scientific and technical content and interpretations contained in this news release have been reviewed, verified and approved by Steven R. Koehler, Gold Standard's Manager of Projects, BSc. Geology and CPG-10216, a Qualified Person as defined by NI 43-101, *Standards of Disclosure for Mineral Projects*.

ABOUT GOLD STANDARD VENTURES - Gold Standard is an advanced stage gold exploration company focused on district scale discoveries on its Railroad-Pinion Gold Project, located within the prolific Carlin Trend. The Company has successfully consolidated the southern end of the Carlin Trend by patiently assembling a 208 sq. km. (80 sq. mi.) land position containing four gold deposits, two of them discovered by Gold Standard. The 2014 Pinion and Dark Star gold deposit acquisitions offer Gold Standard a potential near-term development option and further consolidates the Company's premier land package on the Carlin Trend. The Pinion deposit now has an NI43-101 compliant resource estimate consisting of an Indicated Mineral Resource of 31.61 million tonnes grading 0.62 grams per tonne (g/t) gold (Au), totaling 630,300 ounces of gold and an Inferred Resource of 61.08 million tonnes grading 0.55 g/t Au, totaling 1,081,300 ounces of gold, using a cut-off grade of 0.14 g/t Au (announced March 15, 2016). The Dark Star deposit, 2.1 km to the east of Pinion, has a NI43-101 compliant resource estimate consisting of an Inferred Resource of 23.11 million tonnes grading 0.51 g/t Au, totaling 375,000 ounces of gold, using a cut-off grade of 0.14 g/t Au (announced March 3, 2015). The 2014 and 2015 definition and expansion of these two shallow, oxide deposits demonstrates their growth potential.

Neither the TSXV nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) nor the NYSE MKT accepts responsibility for the adequacy or accuracy of this news release.

CAUTIONARY NOTE REGARDING FORWARD-LOOKING STATEMENTS

This news release contains forward-looking statements, which relate to future events or future performance and reflect management's current expectations and assumptions. Such forward-looking statements reflect management's current beliefs and are based on assumptions made by and information currently available to the Company. All statements, other than statements of historical fact, included herein including, without limitation, statements about our proposed exploration programs are forward looking statements. By their nature, forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause our actual results, performance or achievements, or other future events, to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. Risk factors affecting the Company include, among others: the results from our exploration programs, global financial conditions and volatility of capital markets, uncertainty regarding the availability of additional capital, fluctuations in commodity prices; title matters; and the additional risks identified in our filings with Canadian securities regulators on SEDAR in Canada (available at www.sedar.com) and with the SEC on EDGAR (available at www.sec.gov/edgar.shtml). These forward-looking statements are made as of the date hereof and, except as required under applicable securities legislation, the Company does not assume any obligation to update or revise them to reflect new events or circumstances.

CAUTIONARY NOTE FOR U.S. INVESTORS REGARDING RESERVE AND RESOURCE ESTIMATES

All resource estimates reported by the Company were calculated in accordance with the Canadian National Instrument 43-101 and the Canadian Institute of Mining and Metallurgy Classification system. These standards differ significantly from the requirements of the U.S. Securities and Exchange Commission for descriptions of mineral properties in SEC Industry Guide 7 under Regulation S-K of the U.S. Securities Act of 1933. In particular, under U.S. standards, mineral resources may not be classified as a "reserve" unless the determination has been made that mineralization could be economically and legally produced or extracted at the time the reserve determination is made. Accordingly, information in this press release containing descriptions of the Company's mineral properties may not be comparable to similar information made public by US public reporting companies.

On behalf of the Board of Directors of Gold Standard,

Jonathan Awde, President and Director

Contact

Gold Standard Ventures Corp.
Jonathan Awde
President
604-669-5702
info@goldstandardv.com
www.goldstandardv.com