

AQM Copper Releases Positive Results From Preliminary Feasibility Study of the Zafranal Copper Project

24.05.2016 | [Marketwired](#)

VANCOUVER, May 24, 2016 - [AQM Copper Inc.](#) (TSX VENTURE:AQM) (BVL:AQM) ("AQM" or the "Company") is pleased to announce the completion of a positive, independent Preliminary Feasibility Study ("PFS") of the Company's Zafranal Project ("Project") located in the southern Peru porphyry copper belt.

The Zafranal Copper Project is owned by Compañía Minera Zafranal S.A.C. ("CMZ"), a joint venture company that is beneficially owned by AQM, [Teck Resources Ltd.](#), and Mitsubishi Materials Corporation. AQM, through Minera AQM Copper Peru S.A.C. ("MAQM"), has been the operator of the Project since 2009.

The Zafranal PFS was independently prepared by Ausenco Peru S.A.C., ("Ausenco"), Amec Foster Wheeler PLC ("AmecFW") and NCL Ingeniería y Construcción SpA ("NCL"), with the support from other specialist consultants. The PFS report reflects the design of an open pit mine, conventional flotation concentrator processing facility and associated infrastructure.

PFS Highlights:

- The reported mineral reserve totals 401 million tonnes ("Mt") grading 0.40 % total copper ("Cu") and 0.07 g/t gold ("Au"), and the mine-concentrator as designed is expected to produce 3.1 billion pounds of copper and 484,000 ounces of gold over the 19-year life of the operation.
- Initial capital cost is US\$ 1.16 billion and the base case after-tax valuation yields an expected net cash flow of US\$ 1.6 billion with a net present value ("NPV") of US\$ 496 million at an 8 % discount rate.
- After-tax internal rate of return ("IRR") is 15.9 % and the Project has a 5.1-year payback period from the start of operations.
- Production averages 120,000 tonnes per annum ("tpa") of copper in concentrate over the first 5-year period and 75,000 tpa over the life of the operations.
- A total of 4.4 million dry metric tons ("dmt") of concentrate will be produced over a 19-year period with an average grade of 32.5 % copper and 3.4 grams per tonne gold.
- No deleterious elements in any significant concentration were found in the copper concentrate produced from the flotation testwork, and all the impurity elements were found to be below smelter penalty limits.
- A brackish-water aquifer located within 35 kilometres ("km") of the proposed process plant site has the potential to satisfy the project's process water requirements. Testwork has indicated this water is suitable for concentrator processing.
- Thickened tailings disposal will be in a natural basin approximately 1 km downhill from the plant site.

Bruce Turner, President and Chief Executive Officer of AQM states, "We are extremely pleased with the results of the PFS as it provides a solid basis for advancing the Project. The PFS reflects the combined experience and efforts of the partners and our consultants in delivering an excellent result. Our engagement with the regional and local authorities and representatives of the local communities has generated a constructive space for continued dialogue and we are optimistic that all the stakeholders will benefit from the continued development of the Zafranal Project. AQM currently has CDN\$ 2 million in the bank in Canada, and an additional US\$ 10 million in its subsidiary MAQM in Peru to contribute towards its share of the cost of the next level of study for the Project. We are currently in discussions with our partners as to the next steps to advance the Project."

The PFS was commissioned to further define the development plan for the Zafranal deposit based on the findings from earlier studies but incorporating the following modifications:

- An additional 17,671 metres ("m") of diamond drilling and 9,931 m of reverse circulation ("RC") drilling, including 5,534 m in-fill drilling of Zafranal Main Zone, 4,965 m of metallurgical drilling, 2,267 m of geotechnical drilling, 8,388 m of hydrogeological drilling and 6,447 m of condemnation drilling
- Revised geological and resource models, and development of a geometallurgical model

- Variable concentrator throughput based on mineral zone (competence, hardness and rock quality)
- Variable recovery and concentrate grade based on geometallurgical domains
- Identification and investigation of a brackish groundwater resource within 35 km of the process plant site that is unlikely to be of value for other than industrial uses and could potentially be a water supply for the Project.

PFS Results Summary:

Economic Analysis

Long-term forecasted copper and gold prices of US\$ 3.00 /lb and US\$ 1200 /oz, respectively, were used to estimate Mineral reserves and the base case valuation. The basis of the economic analysis contained in the PFS was signed off by Ausenco and contains production parameters, capital costs, operating costs, pre-tax and post-tax financial projections. The Project is projected to yield the following financial results:

Summary of Financial Results (1)

DESCRIPTION	PRE-TAX (2)	POST-TAX (3)
Initial Capital Cost (US\$ million)	1,157	1,157
Net Cash Flow (US\$ million)	2,711	1,649
Net Present Value at 5 % discount rate (US\$ million)	1,536	813
Net Present Value at 8 % discount rate (US\$ million)	1,084	496
Net Present Value at 10 % discount rate (US\$ million)	849	333
Payback (years) (4)	2.6	5.1
Internal Rate of Return (%)	23.8	15.9

Notes:

Valuation based on 100% Project and 100% Equity. The Zafranal Project is owned through CMZ, a 50/50 corporate joint venture between [Teck Resources Ltd.](#) and the Company's operating subsidiary, Minera AQM

1. Copper Peru S.A.C. ("MAQM"). MAQM is owned 60% by the Company and 40% by Mitsubishi Materials Corporation. As such, the Company has a 30% beneficial ownership interest in the Zafranal Project.
2. Based on pre-tax economic cash flows.
3. Based on after-tax economic cash flows, reflecting mining royalty, special mining tax, corporate income tax (26%) and workers' profit sharing. A 9.3% dividend withholding tax is not included but it would be applied to any repatriation of profits. The calculation of taxes in the valuation was reviewed by Peruvian tax specialists from the law firm of Zuzunaga, Asereto & Zegarra Abogados, Lima Peru.
4. From the start of mill operations.

Key Operating Parameters

DESCRIPTION	UNITS	LOM
Mine Production		
Flotation Ore	kt	400,569
Waste	kt	583,684
Stripping Ratio (incl. Leach Stockpile)		1.46
Ore Processing		
Flotation Ore	kt	400,569
Copper Head Grade - Average	%	0.40
Gold Head Grade - Average	g/t	0.07
Copper Recovery - Average	%	88.1
Gold Recovery - Average	%	54.3
Metal Production		
Copper - Recovered	million lb	3,123
Copper - Annual Average	million lb	164
Gold - Recovered	koz	484

Gold - Annual Average koz 25

Initial Capital Cost

The initial capital cost, including contingency, for the Project is estimated at US\$ 1,157 million with an expected accuracy range of $\pm 25\%$. The PFS envisages that a mining contractor will operate the open pit for the pre-mine period and until Year 3 of production. Year 4 will be a transition year with the contractor winding down and the CMZ operation of the open pit ramping up and continuing until the end of mine life. A summary of initial capital expenditures follows:

Description	\$US Million
Mine	\$ 142
Concentrator	\$ 430
On-Site Infrastructure	\$ 33
Off-Site Infrastructure	\$ 98
Total Direct Capital	\$ 703
Project Preliminaries	\$ 103
Indirect Costs	\$ 132
Owners Costs	\$ 68
Total Indirect Capital	\$ 303
Contingency (15%)	\$ 151
Total Initial Capital Cost	\$ 1,157

Sustaining Capital Cost

The significant sustaining capital in the Mine reflects the purchase of mine equipment fleet in Year 3 and 4 of production as CMZ takes over operation of the mine.

Description	\$US Million
Mine	\$ 213
Concentrator	\$ 15
On-Site Infrastructure	\$ 1
Total Sustaining Capital	\$ 229
Contingency (15%)	\$ 34
Total Sustaining Capital Cost	\$ 263

Total Project Capital Cost

The total Project capital cost is shown in the following table for the LOM:

Description	\$US Million
Initial Capital Cost	\$ 1,157
Sustaining Capital Cost	\$ 263
Project Closure Cost	\$ 136
Total Capital Cost	\$ 1,556

Each element of the estimate is developed initially as a base cost only. A growth allowance has then been allocated to each element of the cost to reflect the level of definition in pricing and design maturity relating to that element. A growth allowance of US\$ 95 million, which is expected to be expended, has been included in the initial capital cost, and represents 11.2 % of Total Direct Cost.

The estimated contingency was then assessed as 15 % of total initial capital cost and 15 % of total sustaining capital cost to arrive at a project estimate within the required 50 % confidence interval ("P50"). The estimated project closure cost was deemed to already include sufficient contingency. The value of the base estimate, the growth allowance, the contingency and the project closure cost represent the total project estimate. Risk events that may or may not affect the capital cost estimate are covered in the positive range

of sensitivity analyses.

Operating Cost

Average mine site production cost is estimated to be \$ 1.29 /lb copper produced from plant feed material processed, including mining, re-handling, milling, and flotation as shown below:

COST ITEM	UNIT	UNIT COST (US\$)
Contractor Mining (Y1 to Y4)	\$ /tonne mined	1.93
Owner Mining (Y4 to Y19)	\$ /tonne mined	1.76
Production Mining (Y1 to Y19)	\$ /t milled	4.25
Milling	\$ /t milled	4.59
G&A	\$ /t milled	1.22
Total Mine Site Operations	\$ /t milled	10.05
Total Mine Site Operations	\$ /lb Cu Produced	1.29

Notes:

The estimated costs exclude the two-year pre-stripping period. Rounding of numbers may result in apparent summation differences.

Average C1 operating costs for the 19-year production period total \$ 1.59 per payable pound of copper net of transport losses and smelter deductions. A breakdown of these costs is shown in the following table, along with estimates for C2 and C3 costs as per Wood Mackenzie definitions.

COST ITEM	AVERAGE FOR 19 YEARS	YEAR 1 TO YEAR 5	YEAR 6 TO YEAR 10
Onsite Costs (Mine, Mill and G&A)	1.33	0.95	1.35
Concentrate Road Transportation	0.06	0.06	0.06
Port Charges, Ocean Freight & Insurance	0.14	0.13	0.14
TC/RC's and Marketing	0.24	0.23	0.24
Less By-Product Credits	(0.17)	(0.15)	(0.17)
Total C1 Costs	1.59	1.21	1.62
Depreciation & Amortization	0.49	0.57	0.33
Total C2 Costs	2.07	1.78	1.96
Royalties	0.07	0.09	0.06
Total C3 Costs	2.14	1.87	2.02

Notes:

Unit Costs based on payable pounds of copper and rounding of numbers may result in apparent summation differences.

Financial Sensitivities

In addition to the base case after-tax evaluation of economic cash flows using a copper price of \$3.00 /lb, initial capital cost of US\$ 1,157 million and a discount rate of 8 %; different copper prices and other variables at the base case copper price were tested to determine financial sensitivities of the Project as shown in the following tables:

Copper Prices (US\$/lb)					
Copper Price Sensitivity	2.00	2.50	3.00	3.50	4.00
Undiscounted Cash Flows Pre-Tax	(311)	1,204	2,711	4,236	5,753
US\$M	After-Tax (478)	648	1,649	2,623	3,574
After-Tax NPV US\$M at 5%	(515)	180	813	1,426	2,029
Discount Rates	8%	(547)	(5)	496	978
					1,454

	10%	(567)	(101)	333	749	1,162	
Internal Rate of Return	IRR %	0.0	% 7.9	% 15.9	% 22.1	% 27.6	%
Changes To Base Case NPV8% (US\$M)							
Inputs /Changes to Inputs	Base Case	-25	% -10	% 0	% 10	% 25	%
Initial Capital (US\$M real)	1,157	745	595	496	394	241	
Total Op. Costs (US\$/t milled) (1)	10.05	788	613	496	374	188	
Head Grade - Feed (Cu %)	0.401	(155)	239	496	745	1,118	
Head Grade - Feed (Au g/t)	0.069	455	479	496	510	534	

Notes:

1. Excludes in-land freight costs

Location

The Zafranal Project is located in southern Peru about 166 km by road (90 km straight-line distance) northwest of the city of Arequipa, 80 km from tidewater and approximately 216 km by road from the Port of Matarani.

The regional climate is arid with scarce precipitation, and average temperatures range between 7 °C in winter and 24 °C in summer. Elevation ranges between 1,400 and 2,900 m above sea level ("masl") in the Project area.

Geology

Zafranal is a classic example of an Andean style porphyry copper-gold deposit. Mineralization is hosted in Jurassic volcano-sedimentary rocks and in a diorite intrusive suite of late Cretaceous age. The emplacement of mineralized porphyries is structurally controlled and occurs near or at the intersection of a series of northwest trending strike-slip faults belonging to the Incapuquio fault system, and regional east-west trending structures. Primary mineralization occurs as chalcopyrite both as disseminations and in quartz stockworks. A near surface well-developed sub-horizontal chalcocite rich supergene enrichment blanket has developed over a 2.5 km strike length, with thicknesses of up to 180 m.

Mining

Conventional open pit operation with mine life of approximately 19 years (excluding two years of pre-stripping) with an average waste to ore strip ratio of 1.36: 1, for the production period. The mine plan developed for the Zafranal Project is designed for a variable feed to a concentrator in the range of 55,000 to 64,000 tonnes per day depending on mineral type, with a peak total material movement of 75 million tonnes per year. The mine is scheduled to work seven days per week or 365 days per year.

The mine design proposes two contiguous pits with a combined strike length of 3,500 m, maximum width of 1,000 m, and maximum depth of 456 m. Pre-production stripping of 45 Mt will be required prior to the start-up of the concentrator. Peak daily movement of 205,000 t of material occurs in production Year 1.

A total of 18 Mt of waste from the mine will be used to construct facility platforms and roadways, and the remaining 548 Mt of waste will be deposited in valley dumps using relatively short haulage cycles. The mine will utilize three of these types of dumps, two above and one below the planned open pits. The northeast dump will receive 12.8 million tonnes. The north waste dump will receive 151 Mt and the central waste dump, below the main open pit will receive 384 Mt. A 17.6 Mt oxide and mixed mineral stockpile will be created on top of the north section of the central waste dump with a crest elevation of 2,580 masl. There are no plans to construct a process plant to process this material at this time and the material in this stockpile is considered as waste. A 38.7 Mt low-grade sulfide stockpile will be created to the west of the open pit. This material will be reclaimed at the end of the mine life and processed through the concentrator.

Milling

The primary crusher will be located adjacent to the mine on the opposite hillside of the valley immediately south of the Main Zone open pit at a base elevation of 2,494 masl. Due to the steep topography between the primary crusher and the rest of the concentrator, the conveyor that transfers the crushed ore to the crushed ore stockpile, which feeds the grinding circuit, passes through a 3,600 m long tunnel.

The rest of the concentrator will be terraced down a ridge with the major facilities including: the crushed ore stockpile and reclaim, grinding and pebble crushing; flotation, regrind, reagents, and concentrate thickening; filtration; concentrate load-out and tailings discharge and water utilities. The concentrator support buildings, general and administration buildings and accommodation camp are located further downhill from the concentrator on the same ridge. The areas are compact but adequate for the facilities.

The tailings management facility ("TMF") will be located 1 km southeast of the concentrator and has been sized to provide sufficient capacity to store approximately 396 million tonnes of tailings based on the mine and concentrator production schedules. Due to the favourable topography in the TMF area which provides a natural basin for the impoundment, only one embankment will be initially required in the southwest of the impoundment with a small embankment required later in the northwest. Sand cycloned from the tailings will be used to raise tailings embankments in ongoing operations. During the design of the TMF to its current status a number of trade-off studies were developed involving alternative disposal sites, disposal methods, embankment construction methods and alternative construction materials.

A comprehensive metallurgical testwork program was performed by C.H. Plenge Laboratories in Lima, Peru and supervised by Transmin Metallurgical Consultants. The testwork was completed on representative samples of the proposed concentrator feed appropriately representative for the PFS. The results of the comminution and flotation programs were combined with results from previous programs for a comprehensive geometallurgical analysis. The proposed flotation feed is amenable to typical copper flotation using conventional concentrator processing technology.

A variable throughput design has been established for the concentrator, dependent on the proportions of feed from each mineral zone ("minzone") domain, based on geometallurgical analysis of the results of comminution testwork and rock quality data, as follows:

MINZONE DOMAIN PROJECTED THROUGHPUT

t/d

Hypogene	57,400
Supergene	65,300
Mixed	72,500

Notes:

During the first year of concentrator operation throughput has been ramped up in staged intervals reaching 55,000 t/d after 11 months of operation, and this throughput rate was also maintained for the full second year of operation. Variable throughput commences at the beginning of the third year of concentrator operation and continued until the end of operations.

Variable concentrate grades and recoveries have been assigned to the concentrator feed based on geometallurgical analysis of flotation testwork results as follows:

MINZONE DOMAIN	GEOMETALLURGICAL CHARACTERISTICS	RECOVERY %			CONCENTRATE COPPER GOLD GRADE % CU
		COPPER	GOLD	GRADE % CU	
Hypogene	Low secondary copper	90.5	56	28	
Supergene	Low acid soluble copper	89	52	37	
Supergene	Medium acid soluble copper	84	55	34	
Supergene/Mixed	High acid soluble copper	77	52	32	
Oxide	Low S/Fe ratio	-	-	-	

A total of 4.4 million dmt of concentrate will be produced over the life of the Project. No deleterious elements in any significant concentration were found in the copper concentrate produced from the testwork, and all the impurity elements were found to be below smelter penalty limits.

Site Access:

CMZ has secured all legal rights for the Project's mineral concessions, and these rights have been recorded at the Public Registry.

CMZ holds the right of surface access to Project's mining concessions to carry out mineral exploration through a renewable lease agreement entered into with, Autodema, the regional governmental agency that manages the Majes Siguas irrigation project. The lease agreement term was last renewed on 11 September 2015 and is in force until 27 October 2017. This annual renewable agreement allows for continued exploration activities within the Zafranal Project and may, under certain conditions, be modified to allow for future development of the Zafranal Project.

CMZ is aware of an ongoing title dispute between Autodema and local landowners, and although CMZ is not involved in the legal dispute, it maintains open dialogue with both parties. As a result of these discussions, CMZ has entered into an option to purchase agreement to acquire the land needed for development of the Project from the local landowners who are disputing title with Autodema to ensure that it will have access to surface rights required for the Zafranal Project regardless of the final outcome of the litigation process.

The main access to the site for personnel and supplies will be via 34 km of an existing and partially paved road from Pedregal de Majes on the Pan American Highway, then from there to the plant site via 9 km of new gravel topped road. A refurbished 26 km gravel topped access road will also be constructed from Anexo de Pedregal to the plant site for transporting personnel, supplies and copper concentrate. Concentrate will be truck transported 216 km, initially from the plant site to Anexo de Pedregal then via existing road to the coast and from there, southeast to the Port of Matarani, using the newly constructed highway along the coast.

Industrial Water Supply

An estimated 410 liters per second ("L/s") of make-up water is required for operations. Field investigations have identified several potential sources of brackish water, unsuitable for human and animal consumption or irrigation of crops, one of which could become a water supply for the Project. One of these is a brackish groundwater resource located 35 km from the process plant site where the groundwater quality is poor but potentially suitable for industrial use at the Zafranal Project. Groundwater extraction from this or any other aquifer will require the approval of the water authorities and the acceptance of the local authorities and community residents. Metallurgical testwork using this brackish water has produced positive results.

Power Supply

The power delivery and site power distribution systems are based on total installed equipment rated at 99 MW with a peak demand of 91 MW. Power supply for production is scheduled to be available from the New Socabaya Substation that is located close to the city of Arequipa. This will require the installation of an approximately 96 km long transmission line to a proposed 220 kV substation that will be located adjacent to the concentrator.

Social and Environment

CMZ has an ongoing extensive stakeholder relations program implemented in an effort to ensure that the Company fully engages with the local communities and regional authorities, informs on project activities, addresses concerns and reduces or mitigates the potential impacts of the Project. A working table forum was established in 2015 with representatives from the local communities.

Environmental and social baseline studies for the Project have been conducted to compile a third modification of the Semi-Detailed Environmental Impact Assessment (EIAsd) in order to obtain environmental certifications and permits for the ongoing exploration and study programs of the Project. The application is currently under review by the relevant authorities.

Formal baseline studies for the Project are being carried out with the completion of the Environmental Impact

Assessment (EIA) currently scheduled for December 2017.

Mineral Resource Estimate

Geological logging and assay results from 295 core holes totalling 95,619 m and 88 RC holes totalling 27,041 m were used as the basis for preparation of three dimensional (3D) wireframe models of geological structures, lithology, alteration, and mineral zonation envelopes.

CMZ prepared the new mineral resource estimate using the revised geological model of the Zafranal Main and Victoria Zones. The mineral resource was subsequently reviewed and audited by Amec Foster Wheeler ("AmecFW"). The resource estimate included in the PFS pertains to the Main Zone and Victoria deposits only, as other known mineralized areas in the Project area were not deemed to be economically attractive at this time. AmecFW reviewed the resource model that had been provided by CMZ and considered that it was suitable for use in resource estimation.

An external review of the analytical QA/QC program completed by Julio Bruna, MAusIMM CP (Geology) and Qualified Person under National Instrument 43-101, of Politax S.A. Santiago, Chile, concluded that the sample preparation, analysis and security program provided an acceptable level of confidence in the assay results and that they can be used for resource estimation and mine planning studies.

Mineral resources were estimated using long-term forecasted copper and gold prices of US\$ 3.50 /lb and US\$ 1,400 /oz, respectively.

A summary of the mineral resource for the PFS at a 0.15 % total copper cut-off grade appears in the following table:

Mineral Resource Estimate for the Zafranal Deposit based on a 0.15% Total Copper Cut-off

Effective Date 14 December 2015, Peter Oshust, PGeo

Classification	Tonnage		Grade			Contained Metal	
	(Mt)		Cu (%)	Au (g/t)	Cu (Mlb)	Au (Moz)	
Measured							
Mixed	-	-	-	-	-	-	
Supergene	83.3	0.58	0.07	1,056	0.20		
Hypogene	120.5	0.28	0.07	744	0.28		
Total Measured	203.8	0.40	0.07	1,801	0.47		
Indicated							
Mixed	23.5	0.28	0.12	146	0.09		
Supergene	100.3	0.53	0.07	1,176	0.21		
Hypogene	139.7	0.26	0.06	804	0.28		
Total Indicated	263.5	0.37	0.07	2,126	0.58		
Measured and Indicated							
Mixed	23.5	0.28	0.12	146	0.09		
Supergene	183.6	0.55	0.07	2,234	0.40		
Hypogene	260.2	0.27	0.07	1,543	0.56		
Total Measured and Indicated	467.3	0.38	0.07	3,925	1.05		
Inferred							
Mixed	7.8	0.22	0.09	37	0.02		
Supergene	8.7	0.30	0.04	57	0.01		
Hypogene	4.9	0.18	0.03	20	0.00		
Total Inferred	21.4	0.24	0.06	114	0.04		

Notes:

1. Mineral resources are reported inclusive of those mineral resources that have been converted to mineral reserves. Mineral resources are reported on a 100% basis.
2. Mineral resources are reported within a constraining pit shell developed using Whittle™ software. Assumptions include metal prices of US\$3.50 /lb for Cu and \$1,400 /oz for Au; process recoveries of 86% for Cu and 50% for Au in supergene, 86% recoveries for Cu and 50% recoveries for Au in mixed, and 89% for Cu and 50% for Au in hypogene, US\$1.58 /t of mining at 2,534 m plus \$0.01 /bench downward and \$0.03 /bench upward. US\$5.45 /tonne for processing, and US\$0.38 /tonne for G&A.
3. Assumptions include 100% mining recovery.
4. An external dilution factor was not considered during this resource estimation. Internal dilution within a 15 m x 15 m x 12 m SMU was considered.
5. The 1.0% Royalty was not considered during the preparation of the constraining pit.
6. Quantities and grades in the mineral resource estimate are rounded to an appropriate number of significant figures to reflect that they are approximations.

Rounding as required by reporting guidelines may result in apparent summation differences between tonnes, grade and contained metal content. The reader should be aware that mineral resources that are not mineral reserves so do not have demonstrated economic viability.

Mineral Reserve Estimate

NCL Ingenieria y Construcción SpA ("NCL") prepared the mine design and mineral reserve estimate by evaluating the measured and indicated mineral resource and sequencing the mining development based on the scheduling the mine pushbacks according to their net processed value. A summary of the mineral reserve for the PFS at a 0.15 % total copper cut-off grade appears in the following table:

Mineral Reserve Estimate for Zafranal Deposit

Reserve Category	Ore Type	Ore Grade		Contained Metal	
		Mt	% Cu	lbs Cu	koz Au
Proven Mineral Reserves					
	Mixed	0.4	0.48	0.11	4
	Supergene	97	0.61	0.08	1,308
	Hypogene	105	0.28	0.07	660
	<i>Total Proven Mineral Reserves</i>	<i>202</i>	<i>0.44</i>	<i>0.07</i>	<i>1,972</i>
Probable Mineral Reserves					
	Mixed	2	0.4	0.11	16
	Supergene	78	0.5	0.06	861
	Hypogene	118	0.27	0.06	694
	<i>Total Probable Mineral Reserves</i>	<i>198</i>	<i>0.36</i>	<i>0.06</i>	<i>1,571</i>
Total Mineral Reserves (proven and probable)					
	Mixed	2	0.41	0.11	20
	Supergene	175	0.56	0.07	2,169
	Hypogene	224	0.27	0.07	1,354
	<i>Total Mineral Reserves (proven and probable)</i>	<i>401</i>	<i>0.4</i>	<i>0.07</i>	<i>3,543</i>
					<i>891</i>

Notes to accompany mineral reserves table

Notes:

1. The Qualified Person for the estimate is Carlos Guzman, RM CMC and FAusIMM, an NCL employee. Mineral Reserves have an effective date of 31 March 2016. Mineral reserves are reported on a 100% basis.

Mineral Reserves are reported as constrained within measured and Indicated pit designs, and supported by a mine plan featuring variable cut-off. The pit designs and mine plan were optimized using the following economic and technical parameters: metal prices of US\$3.0 /lb Cu and US\$1,200 /oz; recovery to concentrate assumptions according to geometallurgical domains for Cu and Au; copper concentrate treatment charges of US\$90 /dmt, US\$0.09 /lb of Cu refining charges and US\$4.0 /oz of Au refining charges;

- 2. concentrate charges of US\$12 /wmt for marketing, US\$37.55 /wmt for road transport, US\$20 /wmt for port and insurance, US\$65 /wmt for shipping and 0.3% for transport losses; average payability of 96.9% for Cu and 90% for Au; average mining cost of US\$1.86 /t, process costs of US\$4.47 /t for mixed and supergene materials and US\$4.75 /t for hypogene, and G&A US\$1.25 /t processed; average pit slope angles that range from 36° to 41°; a 1% royalty rate assumption, and an assumption of 100% mining recovery.
- 3. Rounding as required by reporting guidelines may result in apparent summation differences between tonnes,
- 4. grade and contained metal content.

4. Tonnage and grade measurements are in metric units. Reported copper grades are total copper grades.

4. Contained gold ounces are reported as troy ounces.

Qualified Persons for this Press Release

The NI 43-101 Technical Report has been prepared by an integrated engineering team led by Ausenco in Lima, Peru. The Technical Report will be filed on SEDAR within 45 days of the Press Release date.

The geological information for this press release was approved by Alvaro Fernandez-Baca, P.Geo, a consulting geologist and a Qualified Person under NI 43 - 101.

The analytical QA/QC program for drill samples was reviewed and approved by Julio Bruna Novillo, MAusIMM CP (Geology), of Politax S.A. and a Qualified Person under NI 43 -101.

The mineral resource estimate was prepared by CMZ then reviewed and approved by Peter Oshust, P. Geo., of Amec Foster Wheeler plc and a Qualified Person under NI 43 -101.

The mine design and mineral reserves estimate were prepared under the supervision of Carlos Guzmán, RM CMC and FAusIMM, an employee of NCL Ingeniería y Construcción SpA, and a Qualified Person under NI 43 - 101

The metallurgical and process information contained in this release was approved by Greg Lane, FAusIMM, of Ausenco Services Pty Ltd and a Qualified Person under NI 43-101.

The full list of other Qualified Persons and their responsibilities for geotechnical, hydrogeological, hydrological, environmental and other contributions to the Preliminary Feasibility Study (PFS) will be provided in the Technical Report.

The scientific and technical information contained in this news release has been reviewed, summarized from the PFS and approved by Bruce L Turner, P.Eng., CEO of [AQM Copper Inc.](#), and a Qualified Person under NI 43-101.

On Behalf of the Board, AQM Copper Inc.

Bruce L. Turner
President and Chief Executive Officer

About AQM Copper

[AQM Copper Inc.](#) is a Canadian mineral exploration company exploring and developing copper deposits in South America. Through its Peruvian subsidiary, Minera AQM Copper Peru S.A.C. (MAQM), the Company is developing the Zafranal Copper-Gold Porphyry Project located in Southern Peru. MAQM is the operator of a 50/50 Joint Venture with [Teck Resources Ltd.](#) through a sole purpose Peruvian company, Compañía Minera Zafranal. MAQM is owned 60 % by [AQM Copper Inc.](#) and 40 % by Mitsubishi Materials Corporation.

The Company's management and directors have extensive experience working for the world's largest mining copper producers and investment banking backgrounds. Please refer to the Company's website at www.aqm copper.com, for further information regarding the Company and the Zafranal Project.

NEITHER THE TSX VENTURE EXCHANGE NOR ITS REGULATION SERVICES PROVIDER (AS THAT TERM IS DEFINED IN THE POLICIES OF THE TSX VENTURE EXCHANGE) ACCEPTS RESPONSIBILITY FOR THE ADEQUACY OR ACCURACY OF THIS RELEASE

CAUTIONARY STATEMENT REGARDING FORWARD-LOOKING INFORMATION

Except for statements of historical fact relating to [AQM Copper Inc.](#), certain information contained herein constitutes "forward-looking statements". Forward-looking statements include statements that are predictive in nature, depend upon or refer to future events or conditions, or include words such as "expects", "anticipates", "plans", "believes", "considers", "intends", "targets", or negative versions thereof and other similar expressions, or future or conditional verbs such as "may", "will", "should", "would" and "could". We provide forward-looking statements for the purpose of conveying information about our current expectations and plans relating to the future and readers are cautioned that such statements may not be appropriate for other purposes. By its nature, this information is subject to inherent risks and uncertainties that may be general or specific and which give rise to the possibility that expectations, forecasts, predictions, projections or conclusions will not prove to be accurate, that assumptions may not be correct and that objectives, strategic goals and priorities will not be achieved. These risks and uncertainties include but are not limited to those identified and reported in [AQM Copper Inc.](#)'s public filings, which may be accessed at www.sedar.com. Other than as specifically required by law, we undertake no obligation to update any forward-looking statement to reflect events or circumstances after the date on which such statement is made, or to reflect the occurrence of unanticipated events, whether as a result of new information, future events, results or otherwise.

Contact

To speak with an Investor Relations representative, please contact:
Spyros P. Karella
Pinnacle Capital Markets LTD.
(416) 433-5696 or (416) 800-8921
spyros@pinnaclecapitalmarkets.ca

Dieser Artikel stammt von [Rohstoff-Welt.de](#)

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/231776--AQM-Copper-Releases-Positive-Results-From-Preliminary-Feasibility-Study-of-the-Zafranal-Copper-Project.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinen](#).