

TORONTO, April 27, 2016 /CNW/ - [Roxgold Inc.](#) ("Roxgold" or "the Company") (TSX.V: ROG) is pleased to announce the results of a maiden mineral resource statement for the QV1 target on the Yaramoko permit where the Company is currently constructing the Yaramoko Gold Project with anticipated completion in June this year. The resource estimate was undertaken by SRK Consulting (Canada) Inc. ("SRK") of Toronto and is based on 114 core boreholes totalling approximately 27,000 metres of drilling and has been prepared in accordance with National Instrument 43-101 ("43-101") Standards of disclosure for Mineral Projects.

Highlights:

- Inferred mineral resource estimated at 563,000 tonnes at 12.14 grams of gold per tonne gold ("g/t Au") for 220,000 ounces of gold at a cut-off grade of 5.0 g/t Au
- QV1 structure remains open down plunge
- Further exploration potential at QV Prime ("QV") and foot wall ("FW") zone

"We are pleased to be able to show another milestone in terms of growth on the Yaramoko permit," commented John Dorward, President and CEO of Roxgold. "As we continue to focus on delivering the Yaramoko Gold Project on time and on budget, with first gold scheduled in June, we are encouraged to have a second mineral resource on the Yaramoko permit that highlights the prospectivity of the permit and Roxgold's potential for organic growth."

TABLE 1 - MAIDEN MINERAL RESOURCE STATEMENT, QV1 GOLD DEPOSIT, YARAMOKO PROJECT, SRK Consulting (Canada) Inc., April 22, 2016

Inferred Mineral Resources

Domain	Category	Quantity	Grade	Contained Metal
			(t)	Au (g/t)*
QV1	Inferred	474,000	13.13	200,000
FW	Inferred	40,000	7.49	10,000
QV'	Inferred	49,000	6.40	10,000
Total	Inferred	563,000	12.14	220,000

*Mineral resources are not mineral reserves and have not demonstrated economic viability. All figures have been rounded to reflect the relative accuracy of the estimates. Underground mineral resources are reported at a cut-off grade of 5.0 gpt gold assuming: metal price of US\$1,200 per ounce of gold, mining cost of US\$90 per tonne, G&A cost of US\$7.20 per tonne, processing cost of US\$20.70 tonne, process recovery of 96 percent.

Mineral Resources Estimation parameters and methodology

The reported mineral resources have been estimated using a geostatistical block modelling approach informed by capped composited gold assay data collected in core boreholes. Resource domains were constructed as explicit wireframes using interval selections of assay and lithology data. The same intersections used for generating the wireframes were used for the mineral resource evaluation.

The evaluation of the mineral resources involved the following steps:

- Database compilation and verification;
- Generation of three-dimensional resource structures and verification;
- Data conditioning (compositing and capping), statistical analysis, and variography;
- Selection of estimation strategy and estimation parameters;
- Block modelling and grade estimation;
- Validation, classification, and tabulation;
- Assessment of "reasonable prospects for economic extraction" and selection of reporting assumptions; and
- Preparation of the Mineral Resource Statement.

The exploration database up to March 11, 2016 comprises of 114 core boreholes (27,215 metres), drilled by Roxgold since 2013. SRK reviewed the analytical quality control data generated by Roxgold for the data informing the mineral resource model and found no material flaws. SRK is satisfied that the exploration work carried out by Roxgold has been conducted in a manner consistent with generally recognized industry best practices and, therefore, the exploration drilling data are sufficiently reliable for the purpose of supporting a mineral resource evaluation.

Geological modelling

The shear zone and mineralized structures/quartz veins were constructed using interval selection. Two shear zones were modelled: QV1 and QV' (QV prime). In addition, three gold mineralized structures were modelled within the QV1 shear zone: QV1 Main, QV1 HW, and FW. The average thickness of the gold mineralization at QV1 Main varies from less than one metre to more than 18 metres. The mineral resources extend from the surface to a depth of about 300 metres below the surface, and the gold mineralization remains open along plunge.

Four main lithological units are present in this area of the property: mafic volcanic rock, granite, granodiorite, and diabase. The dominant country rock consists of mafic volcanic rock, fine grained and typically massive away from deformation zones. All geological units, including the QV1 shear zone, are cross-cut by a late ~40 metre wide diabase dike.

At QV1, gold mineralization is primarily associated with quartz-carbonate veins striking northwest within a moderately dipping brittle-ductile shear zone. Gold is also hosted in quartz veins and chlorite filled fractures within brittle deformation zones. The QV1 shear zone strikes northwest (295 to 315°) and dips steeply to the north-northeast (60 to 70°). Kinematic indicators suggest dominant dextral with a minor component of reverse movement in QV1.

At QV', gold mineralization is hosted in millimetre- to centimetre-wide extensional quartz veins and quartz-chlorite veinlets, often associated with carbonate and green mica alteration. Higher grade gold mineralization within QV' is clustered around a west-northwest striking steeply dipping shear zone.

Modelling Parameters

Borehole gold assay data inside the resource domains were extracted and examined for determining an appropriate composite length. A modal composite length of 1.5 metres was applied to all data, honouring the boundary of the lower grade shear zone and the higher grade structure sub-domains.

SRK evaluated the spatial distribution of the gold mineralization using variograms and correlograms of composite data as well as their normal score transform. A total of four spatial metrics were considered to infer the correlation structure to be used in the grade estimation. Continuity direction is primarily based on orientation of the Main domain. Variogram calculation considered sensitivities on orientation angles prior to finalizing the correlation orientation.

Grade Interpolation

Gold grade was estimated into a block model using ordinary kriging and three passes informed by capped composites. The first pass was the most restrictive in terms of search radii and number of boreholes required. Successive passes usually populated areas with less dense drilling, using relaxed parameters with generally larger search radii and less data requirements. SRK assessed the sensitivity of the gold block estimates to changes in minimum and maximum number of data, use of octant search and the number of informing boreholes. Results from these studies show that the model is relatively insensitive to the selection of the estimation parameters and data restrictions. See table 2 for a summary of the grade estimation strategy.

Table 2: Estimation Strategy

Axis	1 st Pass	2 nd Pass	3 rd Pass
Search increment	100% Sill	100% Sill	300% Sill
Interpolation method	OK	OK	OK
Octant search	Yes	Yes	No
Search Volume			
X (metres)	110	110	330
Y (metres)	70	70	210
Z (metres)	20	20	60
Minimum number of octants	5	3	-
Minimum number of composites per octant	1	1	-
Maximum number of composites per octant	10	10	-
Minimum number of composites	6	6	1
Maximum number of composites	10	12	12
Maximum number of composites per borehole 4	4	-	

Capping

The impact of gold outliers was examined on composite data using log probability plots and cumulative statistics. Composites affected by capping were further examined in three dimensions to validate their location and relevance relative to the entire population. For reporting a capping value of 60 g/t Au was selected for the QV1 structure, the results of this analysis are summarized in table 4.

TABLE
3
-
SENSITIVITY
OF
QV1
MAIN
ZONE
QUANTITIES
AND
GRADE
ESTIMATES
TO
CAPPING*

QV1 Capping sensitivity				
capping value Au (g/t)	Cut-off grade Au (g/t)	Quantity (t)	Grade Au (g/t)	Contained Metal Au (oz)
60	3.00	656,000	10.59	223,000
	4.00	560,000	11.81	213,000
	5.00	474,000	13.13	200,000
100	3.00	659,000	11.64	246,000
	4.00	564,000	13.03	236,000
	5.00	480,000	14.52	224,000
150	3.00	661,000	12.05	256,000
	4.00	565,000	13.51	245,000
	5.00	481,000	15.09	233,000
uncapped	3.00	663,000	14.34	306,000
	4.00	568,000	16.14	295,000
	5.00	485,000	18.14	283,000

* The reader is cautioned that the figures in this table should not be misconstrued with a Mineral Resource Statement. The figures are only presented to show the sensitivity of the block model estimates to the selection of a cut-off grade. Figures are rounded to reflect the accuracy of the estimate.

Mineral Resource Classification

Block model quantities and grade estimates were classified by Sébastien Bernier, PGeo (APGO #1847) according to the CIM Definition Standards for Mineral Resources and Mineral Reserves (May 2014). Mineral resource classification is typically a subjective concept, and industry best practices suggest that resource classification should consider the quantity and quality of exploration data supporting the estimates, the confidence in the geological continuity of the mineralized structures, the geostatistical confidence in the tonnage and grade estimates, and the continuity at the reporting cut-off grade. Appropriate classification criteria should aim at integrating these concepts to delineate regular areas at a similar classification.

SRK is satisfied that the geological model constructed for the QV1 gold project honors the current geological information and knowledge. The location of the samples and the analytical data are sufficiently reliable to support resource evaluation and do not present a risk that should be taken into consideration for classification. The mineral resource model is informed by data from core boreholes drilled with pierce points generally spaced approximately 50 metres apart. The controls on the distribution of the gold mineralization are sufficient to infer reasonable continuity of the gold mineralization between sampling points within the meaning of CIM Definition Standards for Mineral Resources and Mineral Reserves (May 2014)

Next Steps

The disclosure of a maiden mineral resource statement for the QV1 gold deposit is not material to Roxgold. As a result, no technical report will be filed in respect of the maiden mineral resource at the QV1 deposit. Roxgold remains committed to bringing the Yaramoko Gold Project into production during Q2 2016 and expects to update the technical disclosure of the project during Q1 2017. The new technical report will summarize the relevant technical information about the new Yaramoko mine, including the potential impact of new mineral resources delineated at the QV1 gold deposit. Exploration drilling at QV1 will target the down plunge extensions with potential to improve and expand the mineral resources delineated to date. There is no guarantee that the additional drilling will be successful at expanding the mineral resources.

Qualified Persons and Additional Information

Block model quantities and grade estimates were classified by Sébastien Bernier, PGeo (APGO #1847) according to the CIM Definition Standards for Mineral Resources and Mineral Reserves (May 2014). All other scientific and technical information contained in this press release has been prepared under the supervision of, and verified by, Ben Pullinger P.Geo, Vice President Exploration for Roxgold, a "qualified person" within the meaning of 43-101.

For a summary of the quality assurance and quality control measures relating to the foregoing disclosure, as well as the material results of surveys and investigations regarding the QV1 deposit, as well as any known legal, political, environmental or other risks that could materially affect the potential development of this target, please refer to the final short form prospectus of Roxgold dated February 26, 2016, the press release of Roxgold dated March 15, 2016 and the annual information form of Roxgold dated April 5, 2016, each available on SEDAR at www.sedar.com.

Management Appointment

The Company is pleased to announce the appointment of Tania Shaw as Director, Investor Relations and Communications effective May 2, 2016. Tania will be responsible for executing an Investor Relations program that will support the transition of Roxgold from a company in the development stage, to a producer poised to continue to deliver shareholder value.

Tania brings 10 years of experience in Investor Relations and Communications. Most recently, Ms. Shaw held positions in both capacities at Primero Mining, and previously was part of the Investor Relations team at Detour Gold. Tania holds a CPIR designation (Certified Professional Investor Relations) and is a member in good standing of CIRI (Canadian Investor Relations Institute).

"I am pleased to welcome Tania to the Roxgold team," commented John Dorward, President and CEO of [Roxgold Inc.](#) "The Company is at a stage where clear and timely communications to our shareholders and stakeholders is crucial, and I am delighted to have strengthened our management team by bringing on board an Investor Relations professional with the experience to manage a strategic and effective Corporate Communications program."

For an image related to today's press release please click on the following link
(http://www.roxgold.com/i/maps/2016-04-27_nrm-rog-p6pbdx.jpg)

Photo Gallery

Shareholders are encouraged to follow the progress of the Yaramoko Gold Project in our Photo Gallery on our website at www.roxgold.com

About Roxgold

Roxgold is a gold exploration and development company with its key asset, the high grade Yaramoko Gold Project, located in the Houndé greenstone region of Burkina Faso, West Africa. The Company is currently in construction and expects to be producing gold by Q2, 2016. Roxgold trades on the TSX Venture Exchange under the symbol ROG and as part of the Nasdaq International Designation program with the symbol OTC: ROGFF.

"Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release."

Forward-Looking Information

This news release contains forward-looking information. Forward looking information contained in this new release includes, but is not limited to, the mineral resource estimate at the QV1 deposit, future exploration and development plans for the Yaramoko Gold Project and other exploration targets underlying the Yaramoko permit, and the future preparation and timing of any technical reports to be prepared by the Company in respect thereof. These statements are based on information currently available to the Company and the Company provides no assurance that actual results will meet management's expectations. In certain cases, forward-looking information may be identified by such terms as "anticipates", "believes", "could", "estimates", "expects", "may", "shall", "will", or "would". Forward-looking information contained in this news release is based on certain factors and assumptions regarding, among other things, the estimation of mineral resources and mineral reserves, the realization of resource estimates and reserve estimates, gold metal prices, the timing and amount of future exploration and development expenditures, the estimation of initial and sustaining capital requirements, the estimation of labour and operating costs, the availability of necessary financing and materials to continue to explore and develop the Yaramoko Gold Project and other targets underlying the Yaramoko permit in the short and long-term, the progress of exploration and development activities, the receipt of necessary regulatory approvals, availability of financing, and assumptions with respect to currency fluctuations, environmental risks, title disputes or claims, and other similar matters. While the Company considers these assumptions to be reasonable based on information currently available to it, they may prove to be incorrect.

Although the Company believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results or developments may differ materially from those in the forward-looking statements. Factors that could cause actual results to differ materially from those in forward-looking statements include: changes in market conditions, unsuccessful exploration results, changes in the price of gold, unanticipated changes in key management personnel and general economic conditions. Mining exploration and development is an inherently risky business. Accordingly, actual events may differ materially from those projected in the forward-looking statements. This list is not exhaustive of the factors that may affect any of the Company's forward-looking statements. These and other factors should be considered carefully and readers should not place undue reliance on the Company's forward-looking statements. The Company does not undertake to update any forward-looking statement that may be made from time to time by the Company or on its behalf, except in accordance with applicable securities laws.

SOURCE [Roxgold Inc.](#)

Contact

Ben Pullinger, Vice President Exploration, 416-203-6401, bpullinger@roxgold.com