

Supports Robust New Development Project
even at current lower Commodity Prices
33% IRR After Tax

Lowest quartile costs with
US\$0.42/lb Cu Eq for DSO and US\$0.80/lb Cu Eq for Concentrate Production

33% Increase in NPV approx.
with only 10% Lift in Commodity Prices

Probable Reserves at
4.1% Cu Equivalent Grade (before recoveries)

SUBIACO, Western Australia, March 18, 2016 /CNW/ - [RTG Mining Inc.](#) ("RTG", the "Company") (TSX Code: RTG, ASX Code: RTG) is pleased to announce the results from an independent Feasibility Study ("FS") for 100% of the high grade Mabilo Copper/Gold Project (the "Project") in southeast Luzon, Philippines. The Feasibility Study demonstrates the potential for Mabilo to outperform, specifically reinforcing the resilience of the Project despite current commodity prices. The Project is both high grade and low cost underpinning the robust economics presented in the FS including a 33% IRR after tax (43.6% with only a 10% lift in commodity prices) and an equivalent operating cost of US\$0.80/lb copper equivalent for concentrate production.

"RTG targets high grade, low operating cost gold projects with low technical and Project risk," said Justine Magee, CEO, RTG Mining. "Since investing in the Mabilo Project in June 2014, the Company has added significant value through rapid and successful exploration to delineate a substantial resource (see November 11, 2015 press release), and again in maintaining this accelerated pace through to a full FS in less than 15 months from the maiden resource.

The high quality resource at Mabilo presents RTG with an excellent near term development opportunity that is financially robust, attractive to potential debt providers, and with additional drilling the resource is expected to grow further, which will only enhance the already strong financials. We look forward to first production and to bringing continued value to our shareholders."

The Mabilo Project is a joint venture between Mt. Labo Exploration and Development Corporation ("Mt. Labo") and Galeo Equipment Corporation in the Philippines.

MABILO 1.35 Mtpa CASE HIGHLIGHTS*

A Robust New Development Opportunity

Probable Mineral Reserves: 7.792Mt @ 2.04 g/t Au, 1.95% Cu, 8.79 g/t Ag, 45.5% Fe

Containing 316Kt Cu equivalent at 4.1% (before recoveries)

IRR (after tax): 33.4% (US\$5000/t Cu, US\$1200/oz Au and US\$50/t Fe)

Payback for Plant: 2.5 years

DSO Capex: US\$17.4M

DSO Opex US\$0.42/lb Cu equivalent

DSO Production 25,000t of Cu and 39,000oz Au

34,700t of Cu equivalent

Plant Capex US\$161.4M (includes US\$14.83 of recoverable VAT)

Plant Pre-strip US\$24.4M (includes US\$2.61 of recoverable VAT)

Plant Opex: \$0.80/lb Cu equivalent

Plant Annual Production 38,300t Cu equivalent

Contained Metal:

* The FS is based on a treatment rate of 1Mtpa. A treatment rate of 1.35Mtpa was also considered in an upside case. Factored indicative capital and operating cost estimates were developed for a planned throughput of 1.35 Mtpa.

DEVELOPMENT SCHEDULE

Optimized Approach to Maximize Returns at Mabilo

Project implementation is planned to be executed in two key stages. Stage 1 is intended to minimize initial capital requirements through a Direct Shipping Ore ("DSO") Operation of an exceptionally high grade, near surface oxide portion of the Mabilo Resource. By utilization of existing infrastructure within easy transport of the Project, the joint venture is able to defer the more capital intensive components of primary production. The early cash flow generated by the DSO should then also minimize any possible equity dilution in the financing of the Stage 2 Primary Production Plant.

Stage 1 will mine the oxide ore down to 30 Relative Level (95m below surface). Three main products will be produced from this oxide mining stage.

- Gold cap ore will be crushed on site and trucked to a nearby existing CIL processing plant. The plant is planned to be upgraded to 300,000tpa throughput and will likely be operated by the Mabilo Joint Venture personnel.
- Both oxide skarn and high-grade supergene chalcocite will be crushed on site with a plan to truck to the existing Larup Port, within 40km, for direct shipping.

Stage 2 of the operation involves processing of primary ore through a purpose-built plant on site. The Mabilo process plant is planned to be built in parallel with the oxide mining phase and Stage 2 permitting process. The processing plant will be a simple crush, grind, float plant with low technical risk, producing three concentrates for sale and is estimated to require approximately 15 months for construction.

Both mining stages are financially robust with the DSO enabling start up and early generation of cash flow within 4-5 months of

finalizing the DSO operating permits. The capital expenditure required for the DSO is relatively nominal at approximately US\$18M and is capable of generating net operating cash flow after tax in the order of US\$ 68M (based on US\$5,000/t Cu, US\$1,200/oz Au and US\$50/t Fe).

Mt. Labo is currently in the final stages of obtaining the necessary operating permits for the first stage of production with timing ultimately dependent on the regulatory processes in the Philippines. The Company is also in discussions with potential debt financiers for the project development.

MABILO FEASIBILITY ECONOMICS (AFTER-TAX)

Highly Sensitive to Both a Growth in Commodity Prices and Resources

The robust feasibility results provide the foundation to grow the Project while generating early cashflows. Mabilo is highly sensitive to both a growth in commodity prices and resources. The 1.35Mtpa case project IRR escalates from 33% to 43.5%* with only a 10% increase in commodity price assumptions. The FS, compiled by Lycopodium Minerals Pty Ltd ("Lycopodium"), is based on the inputs from a number of consultants and the Mabilo Joint Venture ("MJV") including Lycopodium, CSA Global Pty Ltd, Orelogy Consultants Pty Ltd, Orway Mineral Consultants Pty Ltd, Knight Piesold Pty Ltd and Conrad Partners Limited.

1 Mtpa	1.35Mtpa Case	10% Increase in Commodity Prices to	20% Increase in Commodity Prices to
Case	Commodity Prices to	1.35 Mtpa	1.35 Mtpa

Financial Analysis*

IRR	26.09%	33.45%	43.62%	56.29%
NPV				
0%	US\$197M	US\$223M	US\$285M	US\$361M
			28% Increase	63% Increase
5%	US\$126M	US\$156M	US\$207M	US\$269M
			33% Increase	72% Increase
8%	US\$96M	US\$125M	US\$171M	US\$226M
			37% Increase	81% Increase
Payback for Plant (Years)	2.5	2.5	2.42	2.25

*All the economics, including calculations of equivalent estimates referred to in this announcement are based on the following commodity price assumptions: US\$5000/t Cu, US\$1200/oz Au and US\$50/t 62% Fe. The FS is based on a 1 Mtpa plant base case.

Factored indicative capital and operating cost estimates were developed for a planned throughput of 1.35 Mtpa.

Separately, there remains significant upside in the Project from both extensions to the North Mineralised Zone and Inferred Resources contained within the pit. 41% of the 3.91Mt Inferred Resource falls within the final design of the pit, representing 1.61Mt at 1.22% Cu and 1.21g/t Au that could provide near term potential to significantly grow the resource. The pit optimization study shows that an increase in reserves by 19% results in a 24% increase in undiscounted cashflows.

OVERVIEW OF PLANNED OPERATIONS

Producing 3 High Quality Concentrates Through the Plant

The FS on the construction and operation of the plant forms the basis for the life of mine plan, which incorporates both the Stage 1 mining and DSO on the oxide ore and the Stage 2 development of a processing plant for the primary ore. The primary plant will include a simple crush, grind, float facility with thickening and filtration to produce 3 high quality concentrates. The

plant produces the following three (3) high-grade products:

- 27% Cu and 21g/t Au concentrate
- 3g/t Au pyrite concentrate
- 65% magnetite concentrate

The FS is based on a treatment rate of 1 Mtpa. A factored case at a treatment rate of 1.35 Mtpa was also considered by applying a factor of 7.3% to the capital costs. Given the planned operating throughput is likely based on the 1.35Mtpa case, sensitivity modeling for the 1.35 Mtpa case is shown below indicating strong operating and economic results:

1.35Mtpa Case Increase in Commodity Prices* 20% Increase in Commodity Prices*

Oxide/DSO

Capex	US\$17.4M	
Cu Produced	25,000 t	
Au Produced	39,000 oz	
CuEq Produced**	34,700 t	
Net Operating Cashflow before Tax	US\$95M	US\$125M
Net Operating Cashflow after Tax	US\$78M	US\$88M

Average Costs

Per Tonne	US\$62
Per CuEq	US\$0.42/lb

Primary/Plant Operation

Capex	US\$161.37M
	(includes US\$14.83M of recoverable VAT)

Pre- strip for Stage 2

Contained Metal in Average Annual Production	US\$24.37
Cu	(includes US\$2.6M of recoverable VAT)
Au	18,300 t
Fe	67,000 oz
CuEq**	347,000 t
	38,300 t

Ave Annual Net Operating Cashflow before Tax	US\$24.9M	US\$97M
Ave Annual Net Operating Cashflow after Tax	US\$58.8M	US\$67M

Average Costs

Per Tonne	US\$54/t
-----------	----------

Per CuEq

US\$0.80/lb

Production Metrics for Stage 2

Mining

Pre-strip	Mt	18
Average Mining Rate	Tpd	28,400
Average Mine Production	Mtpa	10.4
Total Material Mined	Mt	80.4
Overall Strip Ratio	W:O	10

Processing

Daily Mill Throughput	Tpd	3,700
Annual Mill Throughput	Tpa	1,350,000

Production

Average Annual Cu/Au Con Produced	Tpa	64,900
Average Annual Pyrite Con Produced	Tpa	219,000
Average Annual Magnetite Con Produced	Tpa	534,000

Recoveries

Gold Recoveries in Cu/Au Con	%	55.1
Gold Recoveries in Pyrite Con	%	29.8
Copper Recoveries	%	83.7
Silver Recoveries	%	60.7
Iron Recoveries	%	60.7

Payables/NSR - DSO

Gold Cap Ore	%	100
Copper in Oxide Skarn	%	30
Gold in Chalcocite	%	75
Copper in Chalcocite	%	74

Payables/NSR - Plant

Copper in Cu/Au Concentrate	%	87
Gold in Cu/Au Concentrate	%	91
Gold in Pyrite Concentrate	%	50
Silver in Cu/Au Concentrate	%	83
Iron in Magnetite Concentrate	%	100

*All the economics, including calculations of equivalent estimates referred to in this announcement are based on the following commodity price assumptions: US\$5000/t Cu, US\$1200/oz Au and US\$50/t 62% Fe. The FS is based on a 1 Mtpa plant base case.

Factored indicative capital and operating cost estimates were developed for a planned throughput of 1.35 Mtpa.

** The Copper equivalent tonnes is based on the following formula –

CuEq = (Cu produced/contained*\$5000) + (Au produced/contained*\$1200+ (Any Contained Fe metal produced* \$50))/\$5000

MINERAL RESERVES

March 2016 Mineral Reserve Estimate

The Probable Reserve represents an equivalent copper grade of 4.1%* (before recoveries) containing 316Kt of equivalent copper.

Probable Mineral Reserve Estimate

Ore		Waste Strip Ratio					
Class	Type	Mt	Fe %	Au g/t	Cu %	Ag g/t	Mt
Probable Gold Cap		0.351	40.1	3.11	0.38	3.26	77.713 10.0
	Supergene	0.104	36.5	2.20	20.7	11.9	
	Oxide Skarn	0.182	43.6	2.52	4.17	19.9	
	Fresh	7.155	45.9	1.97	1.70	8.73	
Total Probable Ore		7.792	45.5	2.04	1.95	8.79	

The copper equivalent grade is based on the following formula –

CuEq=(((AuOz*\$1,200)+(CuMetal*\$5,000)+(FeMetal*\$50)+(AgOz*\$14)) / \$5,000)/Total ore tonnes)

The November 2015 resource estimation provided by CSA Global Pty Ltd classified the resource for the Mabilo Project as Indicated and Inferred. Only Indicated Mineral Resources as defined in NI 43-101 were used to establish the Probable Mineral Reserves. No reserves were categorized as Proven.

Application of edge dilution and ore loss to the resource model resulted in a 4% increase in the mining model tonnages and a 5% decrease in gold, copper and silver grades. This mining model was used in all mine planning activities, including pit optimization, mine design and mine scheduling.

Mineral Reserves are quoted within specific pit designs based on indicated resources only and take into consideration the mining, processing, metallurgical, economic and infrastructure modifying factors.

The Mineral Reserves and Resources in this announcement conform to the latest Canadian Institute of Mining, Metallurgy and Petroleum (standards, and have been reconciled from JORC categories. No Inferred Mineral Resources (JORC) have been included in the Reserves in the FS.

MINERAL RESOURCE ESTIMATE

CSA Global has completed two resource estimates for the Mabilo Project, the first in November 2014 and the second in November 2015. The November 2015 resource was an update of the November 2014 estimate based on infill drilling and formed the basis of the DFS. All resource estimation technical reports were completed in compliance with NI 43-101, JORC and CIM standards. There has been no additional drilling on the deposit since the release of the last resource.

Mineral Resource Estimate as at November 2015 for the Mabilo Project

Weathering State	Classification	Million Tonnes	Cu %	Au g/t	Ag g/t	Fe %	Cu Metal (Kt)	Au Oz ('000s)	Fe Metal (Kt)
Oxide + Supergene	Indicated	0.78	4.1	2.7	9.7	41.2	32.1	67.1	320.8
	Inferred	0.05	7.8	2.3	9.6	26	3.7	3.5	12.3
Fresh	Indicated	8.08	1.7	2	9.8	46	137.7	510.5	3,713.70
	Inferred	3.86	1.4	1.5	9.1	29.1	53.3	181.5	1,121.80
Combined	Indicated (Total)	8.86	1.9	2	9.8	45.6	169.8	577.6	4,034.50
Combined	Inferred (Total)	3.91	1.5	1.5	9.1	29	57	184.9	1,134.10

Note: Differences may occur due to rounding. All elements reported as total estimated in-situ for blocks above 0.3 g/t Au lower cut-off, no recovery factors have been considered. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability.

CAPITAL COSTS

2-Stage Development: Overall Low Capital Costs

The capital cost estimates were derived from first principles for the 1 Mtpa process plant to an accuracy of +/- 15% and then the capital cost estimates were factored with an accuracy of +/- 25% for the 1.35 Mtpa process plant.

The capital costs for the Project will be required in two tranches. The first tranche will be prior to oxide mining commencing. The second tranche is planned to coincide with the development and construction schedule associated with Stage 2 of the Project.

Cost Area	Stage 1 -DSO US\$M
Direct	
Pre-Strip	3.30
Mobilisation	0.66
Site Preparation, Roads and Environment	3.65
Port	0.30
Buildings and Equipment	0.55
Mining Facilities	1.40
Upgrade Apex CIL Plant	0.71
Direct Works Subtotal	10.57
Indirect	
Land Acquisition	5.62
Contingency	1.16
Indirect Subtotal	6.78
TOTAL OXIDE MINING CAPITAL COSTS	17.35
Cost Area	Stage 2 – Primary Plant
	US\$M
Direct	
Treatment Plant	57.41
Infrastructure, Roads and Port	31.86
Pit Dewatering Bores	1.28
Management Costs	12.67
Direct Works Subtotal	103.22
Indirect	
Project Indirects	11.49
Owners Costs	13.21
Land Acquisition	4.60
Contingency	14.02
Value Added Tax	14.83
Indirect Subtotal	58.16
TOTAL PRIMARY PLANT CAPITAL COSTS	161.37

The operating cost estimates were derived from first principles for the 1Mtpa process plant and then plant costs were factored with an accuracy of +/- 25% for the 1.35Mtpa operating scenario. All costs are in 2015 US dollars. The mining costs were derived from IMC's Mabilo Mine Operating Cost Estimate Report, which were then reviewed by Oreology Consulting. The costs are based on a contract mining operation with bench rates (\$/bcm), ore rehandle rates (\$/t), grade control and dump rehabilitation plus annual fixed mining overheads.

Process plant operating costs for the 1.0Mtpa FS base case were compiled from information sourced by Lycopodium and the Mt Labo Joint Venture ("MJV"):

- Manning levels and pay rates advised by MJV to suit the proposed process plant unit operations and plant throughput.
- Consumable prices from supplier budget quotations and the Lycopodium database.
- Flotation reagent consumption and metal / concentrate recoveries based on laboratory test work results and the mining schedule.
- Modelling by Orway Mineral Consultants for crushing and grinding energy and consumables, based on ore characteristics derived from relevant test work.
- First principle estimates, where required, based on typical operating experience or standard industry practice.
- Benchmarking within the Philippines and comparison with costs at other similar operations.

Processing costs for the 1.35Mtpa upside case were then factored from the FS base case.

The process plant availability has been nominated as 91.3% for milling and downstream operations and 80% for the crushing plant including scheduled and unscheduled maintenance. The product filters will operate in a semi batch mode and a lower operating availability of 75%.

G&A costs were based on current operations in the Philippines and amended to account for the size of the operation and people employed.

Stage 1 - DSO Stage 2 – Primary Plant

Average Operating Costs

Mining US\$/t mined (includes pre-strip costs)	1.57	1.49
Mining US\$/t ore (excludes pre-strip costs)	7.49	14.09
Processing US\$/t ore	41.26	32.14
G&A US\$/t ore	6.89	7.65
Total Operating Cost US\$/t ore	61.91	53.89

MINING

Mining is planned to be conducted using open pit methods. The ore is to be accessed in a series of stages. The stage designs were generated in order to enhance the scheduling process aiming to defer waste mining as much as practically possible and to bring forward higher-grade ores. Five (5) meter high benches have been used, given the scale of the operation and the equipment planned for the mining operation. A bench height of 5m mined in two 2½m flitches results in acceptable dilution and ore loss projections. A mining contractor is assumed for both pre-production and the ongoing development of the mine.

There are three distinct different loading and hauling situations that require different fleets:

- Pioneering and Pit Development - Pioneering and pit development will be undertaken by 100t excavators (Komatsu PC 1250) and 40t articulated 6WD trucks (Caterpillar 745).
- Ore and Waste Mining - The main fleet for the ore and waste mining activities consists of 100t excavators and 55t rigid haul trucks (Caterpillar 773).
- Bulk Waste Mining - A 200t excavator (Komatsu PC 2000) and a fleet of 90t haul trucks (Caterpillar 777) will be used to undertake waste stripping of the last two cutbacks.

Free digging is expected in all oxide materials while fresh rock materials are broken and loosened with drilling and blasting.

METALLURGY AND PROCESSING

The proposed process plant design for the Mabilo Project is based on a robust metallurgical flowsheet designed for optimum recovery with minimum operating costs, based on an initial 1Mtpa throughput, and then upgraded and optimized for a planned 1.35Mtpa throughput. The flowsheet is constructed from unit operations that are well proven in industry.

The treatment plant design incorporates the following unit process operations:

- Single stage open circuit primary crushing to produce a crushed product size of 80% passing (P80) 120 mm.
- A crushed ore surge bin with a nominal capacity of 120t. Surge bin overflow will be conveyed to a dead stockpile of 20,000 tonnes. Ore from the dead stockpile will be reclaimed by front-end loader ("FEL") to feed the mill during periods when the crushing circuit is off-line.
- Grinding of ore in a SAG mill circuit in closed circuit with hydrocyclones to produce a P80 grind size of 90 µm.
- Bulk sulphide flotation to recover copper sulphides and gold bearing pyrite.
- Two-stage cleaner flotation to recover copper sulphides into a copper concentrate and pyrite into a product for sale.
- Concentrate thickening and pressure filtration to produce a copper concentrate filter cake.
- Pyrite thickening and pressure filtration to produce a pyrite concentrate filter cake.
- Magnetic separation of the bulk sulphide tails to recover magnetite into concentrate.
- Concentrate thickening and pressure filtration to produce a magnetite concentrate filter cake.
- Combined tailings pumping to the tailings storage facility ("TSF").

A planned flowsheet for the process is shown above.

Ultimately, the ability to develop and progress the plans as considered in the FS are dependent upon many factors including the ability to secure the necessary permits, working successfully with local communities and governments, securing all necessary surface rights and the support of the Philippine regulatory bodies and our partners.

MARKETING AGREEMENT & DEBT FINANCING

Underway with Positive Progress to Date

Mt. Labo has appointed Conrad Partners, based in Hong Kong, as its agent for the marketing of offtake for both Stage 1, the planned DSO and Stage 2, namely the production of three high grade concentrate products. Conrad Partners has completed a full marketing report for the FS, based on discussions with potential offtake parties and has provided the underlying assumptions used in the compilation of the Life of Mine Financial Model based on the FS results.

RTG is in discussions with a number of potential debt financiers for the Project including both traditional bank debt, derivative instruments and notes and offtake linked facilities. The feedback and progress on the financing has been very positive to date and with the completion of the Feasibility Study, the Company will be able to further advance those discussions with a view to finalizing a mandate with a preferred provider.

ABOUT RTG MINING INC

[RTG Mining Inc.](#) is a mining and exploration company listed on the main board of the Toronto Stock Exchange and Australian Securities Exchange Limited. RTG is focused on developing the high-grade copper/gold/magnetite Mabilo Project and advancing exploration on the highly prospective Bunawan Project, both in the Philippines, while also identifying major new projects which will allow the Company to move quickly and safely to production.

RTG has an experienced management team (previously responsible for the development of the Masbate Gold Mine in the Philippines through [CGA Mining Ltd.](#)), and has B2Gold as one of its major shareholders in the Company. B2Gold is a member of both the S&P/TSX Global Gold and Global Mining Indices.

CAUTIONARY NOTE REGARDING FORWARD LOOKING STATEMENTS

This announcement includes certain "forward-looking statements" within the meaning of Canadian securities legislation. Statement regarding interpretation of exploration results, plans for further exploration and accuracy of mineral resource and mineral reserve estimates and related assumptions and inherent operating risks, are forward-looking statements. Forward-looking statements involve various risks and uncertainties and are based on certain factors and assumptions. There can be no assurance that such statements will prove to be accurate, and actual results and future events could differ materially from those anticipated in such statements. Important factors that could cause actual results to differ materially from RTG's expectations include uncertainties related to fluctuations in gold and other commodity prices and currency exchange rates; uncertainties relating to interpretation of drill results and the geology, continuity and grade of mineral deposits; uncertainty of estimates of capital and operating costs, recovery rates, production estimates and estimated economic return; the need for cooperation of government agencies in the development of RTG's mineral projects; the need to obtain additional financing to develop RTG's mineral projects; the possibility of delay in development programs or in construction projects and uncertainty of

meeting anticipated program milestones for RTG's mineral projects and other risks and uncertainties disclosed under the heading "Risk Factors" in RTG's Annual Information Form for the year ended 31 December 2014 filed with the Canadian securities regulatory authorities on the SEDAR website at sedar.com.

QUALIFIED PERSON AND COMPETENT PERSON STATEMENT

The information in this release that relates to exploration results at the Mabilo Project is based upon information prepared by or under the supervision of Robert Ayres BSc (Hons), who is a Qualified Person and a Competent Person. Mr Ayres is a member of the Australian Institute of Geoscientists and a full-time employee of Mt Labo Exploration and Development Company, a Philippine mining company, an associate company of RTG Mining Limited. Mr Ayres has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" and to qualify as a "Qualified Person" under National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Mr. Ayres has verified the data disclosed in this release, including sampling, analytical and test data underlying the information contained in the release. Mr. Ayres consents to the inclusion in the release of the matters based on his information in the form and the context in which it appears.

The information in this release that relates to Mineral Resources is based on information prepared by or under the supervision of Mr Aaron Green, who is a Qualified Person and Competent Person. Mr Green is a Member of the Australian Institute of Geoscientists and is employed by CSA Global Pty Ltd, an independent consulting company. Mr Green has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" and to qualify as a "Qualified Person" under National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Mr. Green has verified the data disclosed in this release, including sampling, analytical and test data underlying the information contained in the release. Mr Green consents to the inclusion in the release of the matters based on his information in the form and context in which it appears.

The information in this release that relates to Mineral Reserves and Mining is based on information prepared by or under the supervision of Mr Carel Moormann, who is a Qualified Person and Competent Person. Mr Moormann is a Fellow of the AusIMM and is employed by Oreology, an independent consulting company. Mr Moormann has sufficient experience that is relevant to the type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" and to qualify as a "Qualified Person" under National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Mr Moormann has verified the data disclosed in this release, including sampling, analytical and test data underlying the information contained in the release. Mr Moormann consents to the inclusion in the release of the matters based on his information in the form and context in which it appears.

The information in this release that relates to Metallurgy and Processing is based on information prepared by or under the supervision of David Gordon, who is a Qualified Person and Competent Person. David Gordon is a Member of the Australasian Institute of Mining and Metallurgy and is employed by Lycopodium Minerals Pty Ltd, an independent consulting company. David Gordon has sufficient experience that is relevant to the type of process under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" and to qualify as a "Qualified Person" under National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). David Gordon has verified the data disclosed in this release, including sampling, analytical and test data underlying the information contained in the release. David Gordon consents to the inclusion in the release of the matters based on his information in the form and context in which it appears.

The information in this release that relates to areas outside of exploration results, Mineral Resources, Mineral Reserves and Metallurgy and Processing is based on information prepared by or under the supervision of Mark Turner, who is a Qualified Person and Competent Person. Mark Turner is a Fellow of the Australasian Institute of Mining and Metallurgy and is employed by [RTG Mining Inc.](#), the Company. Mark Turner has sufficient experience that is relevant to the information under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" and to qualify as a "Qualified Person" under National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Mark Turner has verified the data disclosed in this release. Mark Turner consents to the inclusion in the release of the matters based on his information in the form and context in which it appears.

For the ASX announcement including JORC tables Section 1 to 4 please refer to the RTG Mining website (www.rtgmining.com) and on the ASX, under announcements (www.asx.com.au).

SOURCE [RTG Mining Inc.](#)

Contact

ENQUIRIES: Australian Contact: President & CEO - Justine Magee, Tel: +61 8 6489 2900, Fax: +61 8 6489 2920, Email: jmagee@rtgmining.com; US Contact: Investor Relations - Jaime Wells, Mobile: +1 970 640 0611, jwells@rtgmining.com