

Concordia Continues to Expand Gold System at Kerboule Project, Burkina Faso

12.09.2012 | [Marketwired](#)

VANCOUVER, BRITISH COLUMBIA -- (Marketwire) -- 09/12/12 -- [Concordia Resource Corp.](#) (TSX VENTURE: CCN) ("Concordia" or the "Company") is pleased to report that all of the results of the second phase of drilling at its 100% owned Kerboule Project in northern Burkina Faso are now available. A total of 10,367 meters of reverse circulation ("RC") drilling and 3,388 m of core drilling was completed in the Kerboule area during the two phases of drilling during 2012.

Highlights include: 20 m at 2.39 g/t gold ("Au") (hole KBS-RC-005); 29 m at 7.43 g/t Au (KBS-RC-010); 23 m at 1.27 g/t Au (KBS-RC-012); 40 m at 1.94 g/t Au (KBS-RC-013); 38 m at 3.95 g/t Au (KB-DD-005); 29 m at 4.0 g/t Au (KB-RC-010); and 4 m at 15.79 g/t over 4m (YAL-RC-001).

Six areas were drilled within the five-kilometer Kerboule-Yalema mineralization trend, confirming and extending the known mineralization at Kerboule Main, Kerboule North, Kerboule South, and Yalema. Further work is required in this area to identify the source of the significant artisanal workings in Yalema East in view of the inconclusive results to date.

In addition to the above, limited drilling was carried out on new geophysical anomalies and a new area of mineralization has been identified at 'Kerboule Village South East'. These results are significant, as it confirms mineralization over a much broader zone than the known Kerboule-Yalema trend.

Significant new intersections from the main target areas are shown below.

To view Figures 1 and 2, click on the following link:
<http://media3.marketwire.com/docs/c911m.pdf>

At Kerboule South the highlights of the 2012 drilling program include 1.05 g/t over 21m from KBS-DD-003, 1.28 g/t over 22m from KBS-DD-004, 2.39 g/t over 20m from KBS-RC-005, 7.43 g/t over 29m from KBS-RC-010, 1.27 g/t over 23m from KBS-RC-012, 1.94 g/t over 40m from KBS-RC-013, and 1.95 g/t over 22m from KBS-RC-017.

Anomaly	Hole ID	Type	From (m)	To (m)	Length (m)	Au (g/t)
Kerboule	KBS_DD_001	Core	2	9	7	1.23
	KBS_DD_001	Core	138	144	6	1.64
	KBS_DD_001	Core	179	183	4	1.18
	KBS_DD_002	Core	121	126	5	5.13
	KBS_DD_002	Core	134	139	5	1.43
	KBS_DD_003	Core	85	106	21	1.05
	KBS_DD_004	Core	81	90	9	3.04
	KBS_DD_004	Core	95	101	6	1.45
	KBS_DD_004	Core	114	136	22	1.28
	KBS_DD_004	Core	158	170	12	1.29
	KBS_DD_005	Core	84	101	17	1.30
	-including		87	95	7	2.19
	KBS_DD_005	Core	121	125	4	1.93
	KBS_DD_005	Core	138	140	2	1.38
	KBS_DD_005	Core	185	190	5	1.12
	KBS_DD_005	Core	209	213	4	1.36
	KBS_DD_005	Core	276	279	3	1.67
	KBS_RC_001	RC	14	23	9	3.71
	KBS_RC_001	RC	45	56	11	2.65
	KBS_RC_002	RC	27	36	9	0.69
	KBS_RC_002	RC	133	139	6	2.42
	KBS_RC_005	RC	31	37	6	1.07
	KBS_RC_005	RC	67	87	20	2.39
	-including		73	78	5	5.82
	KBS_RC_005	RC	96	100	4	1.83
	KBS_RC_006	RC	15	18	3	2.55
	KBS_RC_008	RC	73	93	20	0.97
	-including		73	80	7	1.36
	KBS_RC_009	RC	6	8	2	1.17
	KBS_RC_010	RC	101	130	29	7.43
	-including		127	128	1	188.11
	KBS_RC_011	RC	107	118	11	1.78
	-including		110	117	7	2.43
	KBS_RC_011	RC	141	146	5	1.43
	KBS_RC_012	RC	13	36	23	1.27
	-including		20	26	6	2.46
	KBS_RC_013	RC	35	39	4	2.35
	KBS_RC_013	RC	55	95	40	1.94
	-including		66	77	11	3.11
	KBS_RC_017	RC	89	111	22	1.95
	KBS_RC_018	RC	41	45	4	1.40
	KBS_RC_018	RC	51	59	8	1.13
	KBS_RC_018	RC	66	71	5	1.95
	KBS_RC_019	RC	91	101	10	1.88
	KBS_RC_019	RC	129	137	8	1.04
	KBS_RC_020	RC	82	92	10	1.23
	KBS_RC_021	RC	37	48	11	1.34
	KBS_RC_023	RC	62	76	14	1.16
	KBS_RC_025	RC	140	143	3	1.08
	KBS_RC_026	RC	35	41	6	2.50
	KBS_RC_026	RC	88	99	11	1.22

Highlights from the drilling at Kerboule Main include 4.08 g/t over 5 m from KB-DD-001, 3.60 g/t over 5m from KB-RC-002 and 2.81 g/t over 5m from KB-RC-003.

Anomaly	Hole ID	Type	From (m)	To (m)	Length (m)	Au (g/t)
Kerboule Main	KB_DD_001	Core	71	76	5	4.08
-including			71	73	2	8.78
KB_DD_002	Core		58	62	4	1.07
KB_DD_002	Core		176	184	8	1.29
KB_RC_002	RC		38	43	5	3.60
KB_RC_003	RC		35	40	5	2.81
-including			36	37	1	10.37
KB_RC_017	RC		35	38	3	2.88
KB_RC_020	RC		24	31	7	1.36

At Kerboule North, highlights of the 2012 drilling program include 3.95 g/t over 38m from KB-DD-005, 4.0 g/t over 29m from KB-RC-010, and 3.74 g/t over 5m from KB-RC-012. Significant intercepts from this area are shown below:

Anomaly	Hole ID	Type	From (m)	To (m)	Length (m)	Au (g/t)
Kerboule North	KB_DD_004	Core	99	100	1	99.85
KB_DD_005	Core		80	83	3	2.15
KB_DD_005	Core		104	118	14	1.03
KB_DD_005	Core		121	159	38	3.95
-including			121	122	1	93.49
-including			144	145	1	13.27
-including			150	151	1	18.26
KB_DD_006	Core		170	188	18	1.09
KB_RC_008	RC		115	124	9	1.35
-including			115	116	1	7.24
KB_RC_008	RC		129	133	4	1.09
KB_RC_009	RC		45	50	5	1.68
KB_RC_009	RC		64	77	13	0.83
KB_RC_009	RC		130	143	13	1.52
-including			132	133	1	7.75
KB_RC_010	RC		76	84	8	0.94
KB_RC_010	RC		121	150	29	4.00
-including			137	138	1	86.48
KB_RC_011	RC		33	46	13	1.00
KB_RC_012	RC		32	37	5	3.74
KB_RC_012	RC		85	89	4	1.07
KB_RC_013	RC		100	108	8	1.47
KB_RC_013	RC		129	139	10	1.67
-including			133	139	6	2.55
KB_RC_016	RC		72	75	3	1.74
KB_RC_018	RC		91	96	5	1.68
KB_RC_021	RC		10	18	8	1.29
KB_RC_021	RC		91	96	5	1.39
KB_RC_039	RC		14	25	11	1.05
KB_RC_041	RC		30	38	8	1.07
KB_RC_041	RC		108	110	2	1.53
KB_RC_043	RC		122	150	28	1.19
-including			149	150	1	12.07
KB_RC_045	RC		54	56	2	2.98
KB_RC_046	RC		77	86	9	1.04
KB_RC_049	RC		71	94	23	1.41
-including			83	89	6	2.32
KB_RC_049	RC		106	124	18	1.31
-including			107	115	8	2.15

At Yalema, highlights of the 2012 drilling program include 15.79 g/t over 4m from YAL-RC-001, and 8.51 over 2m from YAL-RC-003. Significant results from this area are shown below:

Anomaly	Hole ID	Type	From (m)	To (m)	Length (m)	Au (g/t)
Yalema	YAL_DD_001	Core	108	111	3	1.79
	YAL_RC_001	RC	52	56	4	15.79
	YAL_RC_003	RC	32	34	2	8.51

Highlights from drilling on a new geophysical target at 'Kerboule Village South East", include 1.21 g/t over 18m from KB-RC-023 and 1.47 g/t over 13m from KB-RC-023. These are shown below:

Anomaly	Hole ID	Type	From (m)	To (m)	Length (m)	Au (g/t)
Kerboule Village SE	KB_RC_023	RC	31	49	18	1.21
	KB_RC_023	RC	73	86	13	1.47
	-including		76	80	4	2.91

The gold mineralization in the Kerboule area consists predominately of discrete stockwork zones located at sheared lithological contacts. The mineralization occurs within tubular bodies lying sub-parallel to the main foliation fabric, the 'Inata-Kerboule shear zone'. The 2012 drilling program was designed define an initial mineral resource at Kerboule South, Kerboule Main and Kerboule North.

QUALIFIED PERSON

Mr. Barry Bayly, is a member of the South African Council for National Scientific Professionals (SACNSP), South Africa, and is a qualified person in accordance with National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101"). He is responsible for the exploration program on Kerboule. He has verified the data disclosed in this news release. Drill samples were submitted to the Bigs Global Laboratory in Ouagadougou, Burkina Faso, for preparation and assaying using the Pb based Fire-Assay / Flame AAS analysis technique. In order to ensure the Quality Control of the samples, check and repeat assays were submitted on a regular basis, 4% of the samples were standards, 3% were blanks and 3% were duplicates. Mr. Bayly is the chief operating officer of Swala Resources Inc., a 100%-owned subsidiary of Concordia, and is therefore not independent within the meaning of NI 43-101.

ABOUT CONCORDIA

Concordia is a well-financed junior exploration company with an emphasis on developing mineral deposits in Africa and South America. Concordia has an extensive exploration portfolio in the resource-endowed regions of Burkina Faso and the Democratic Republic of Congo (the "DRC"), with a land package in Africa totalling approximately 8,500 km². In addition, Concordia has acquired an option to purchase 100% of the historic La Providencia silver mine located in the Puna of northwestern Argentina and has also acquired an option to purchase the 14,000 ha Cerro Amarillo-Cajon Grande copper-gold-molybdenum property located in the Malargue District of Argentina. The Company has an experienced management team and board of directors with extensive expertise across the globe.

On behalf of the Board of [Concordia Resource Corp.](#)

R. Edward Flood
Chairman

Certain of the statements made and information contained herein is "forward-looking information" within the meaning of the British Columbia Securities Act. When used in this news release, the words "anticipate", "believe", "estimate", "expect", "target", "plan", "forecast", "may", "schedule" and similar words or expressions, identify forward-looking information. The forward-looking information relate to, among other things, the receipt of necessary permits to conduct exploration and construction, timing of anticipated exploration program and results of current exploration program, the number of the holes and meters to be drilled and future plans of the Company. Forward-looking information is subject to a variety of risks and uncertainties which could cause actual events or results to differ from those reflected in the forward-looking information, including, without limitation, risks and uncertainties relating to risks inherent in mining including environmental hazards, industrial accidents, unusual or unexpected geological formations, ground control problems and flooding; risks associated with the estimation of mineral resources and reserves and the geology, grade and continuity of mineral deposits; the possibility that future exploration, development or mining results will not be consistent with the Company's expectations; the potential for and effects of labour disputes or other unanticipated difficulties with or shortages of labour or interruptions in production; actual ore mined varying from estimates of grade, tonnage, dilution and metallurgical and other characteristics; the inherent uncertainty of production and cost estimates and the potential for unexpected costs and expenses, commodity price fluctuations; uncertain political and economic environments; changes in laws or policies, delays or the inability to obtain necessary governmental permits; and other risks and uncertainties, including those described in each management discussion and analysis. Forward-looking information is in addition based on various assumptions including, without limitation, the expectations and beliefs of management, the assumed long term price of metals; appropriate equipment and sufficient labour and that the political environment where the Company operates will continue to support the development and operation of mining projects. Should one or more of these risks and uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the forward-looking information. Although the Company has attempted to identify important factors that could cause actual results to differ materially, there may be other factors that cause results not to be anticipated, estimated or intended. The Company does not intend, and does not assume any obligation, to update the forward-looking information to reflect changes in assumptions or changes in circumstances or any other events affecting such information, other than as required by applicable law. Accordingly, readers are advised not to place undue reliance on forward-looking information.

The TSX-V has neither approved nor disapproved the contents of this press release. Neither the TSX-V nor its Regulation Services Provider (as that term is defined in the policies of the TSX-V) accepts responsibility for the adequacy or accuracy of this press release.

Contacts:

Concordia Resource Corp.

Toby Mayo, President
+1 (604) 669-6446
info@concordiaresourcecorp.com
www.concordiaresourcecorp.com

Dieser Artikel stammt von Rohstoff-Welt.de

Die URL für diesen Artikel lautet:

<https://www.rohstoff-welt.de/news/133003-Concordia-Continues-to-Expand-Gold-System-at-Kerboule-Project-Burkina-Faso.html>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere [AGB/Disclaimer!](#)

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt!
Alle Angaben ohne Gewähr! Copyright © by Rohstoff-Welt.de -1999-2026. Es gelten unsere [AGB](#) und [Datenschutzrichtlinien](#).