VANCOUVER, BRITISH COLUMBIA--(Marketwired - Jun 19, 2017) - <u>Kenadyr Mining (Holdings) Corp.</u> (TSX VENTURE:KEN)(OTCQB:KNDYF)(FRANKFURT:KM0) (the "Corporation" or "Kenadyr") is pleased to announce that the second drill hole of the 2017 season, collared at the East Zone on Kenadyr's 100% owned Borubai License, Kyrgyz Republic, has intersected 50 meters at 8.15 g/t Au, from a downhole depth of 151 m to 201m.

The East Zone, as is the case with the previously drilled South Zone (40m @ 6.17 g/t Au in drill hole SZ-1-17), is directly adjacent to Zijin Mining Group Co Ltd.'s ("Zijin") Taldy Bulak Levoberejnyi (TBL) Mine, currently in production. The East Zone intersection, from drill hole EZ-1-17, is approximately 1 km from drill hole SZ-1-17, which was drilled in the South Zone. Zijin's TBL Deposit occurs directly between these two drill holes. Both drill holes encountered identical mineralization consisting of pervasive quartz-tourmaline-pyrite stockwork veining. This mineralization is consistent with the mineralization being mined at the TBL Deposit.

To view the map associated with this release, please visit the following link: http://media3.marketwire.com/docs/ken0619map.pdf.

Kenadyr's initial drilling was designed to intersect the various areas surrounding the TBL Mining Lease, which were previously drilled by the Soviets between 1970 and 1990, and where significant gold mineralization was reported. Subject to additional drilling results, Kenadyr's initial drill holes SZ-1-17 and EZ-1-17 confirm the presence of highly significant widespread gold mineralization reported historically by the Soviets, however these drill holes also encountered stronger and thicker mineralization than was previously reported from both the South Zone and the East Zone. These intersections confirm that significant widespread gold mineralization exists on Kenadyr's license directly adjacent to the TBL Mine, and that this mineralization continues in both directions along strike from the TBL Deposit.

The East Zone is open in two directions and to depth, and appears to directly connect to the TBL deposit. Core recovery for drill hole EZ-1-17 is > 99% and all intervals have been assayed using fire assay methods at an internationally accredited laboratory (ALS Global).

Drill Hole EZ-1-17 Assay Results are listed in the table below:

From To Intervals (meters) Grade Au g/t

151 m 201 m 50 meters

8.15 g/t Au

including

161 m 179 m 18 meters

12.8 g/t Au

The Corporation is confident that these intersections are approximate 'true widths'.

Kenadyr is in a strong position having a robust balance sheet, no debt nor significant payments owing, and a supportive institutional shareholder base. The management team has extensive in-country operational experience, and merger and acquisition expertise.

Dr. Alexander Becker, Kenadyr Chief Executive Officer, states, "These results from our second 2017 drill hole at Borubai have again exceeded our expectations. This latest drill hole, located on Kenadyr's license and drilled at the East Zone, demonstrates that highly significant gold mineralization also continues strongly to the East of the TBL Deposit, onto Kenadyr's License. Technical staff believe, based on the strength of the mineralization encountered in our first two 2017 drill holes that the mineralization being mined at the adjacent TBL Mine continues strongly in two directions along strike onto Kenadyr's Borubai License. As well, based on the geometry of the TBL deposit, the Corporation is confident that these intersections are approximate 'true widths'."

Kenadyr's Borubai project comprises a 100-per-cent-owned exploration license covering a contiguous 164-square-kilometre land package that encircles the Zijin/Kyrgyzaltyn newly constructed and operational TBL mine, in northern Kyrgyz Republic.

Zijin, the majority owner of the TBL mine, is one of China's largest gold producers, second-largest copper and zinc producer, as well as a major producer of tungsten and iron ore (source: Zijin website). According to a news release published by Zijin on Aug. 15, 2011, the national resources table of Kyrgyz Republic stated that the TBL field contains (C1 plus C2) 8,906,100 tonnes of gold ore (the average grade is 7.23 grams per tonne). The TBL mine is designed to produce 125,000 ounces of gold per annum. The TBL mine deposit is directly adjacent to Kenadyr's initial drill targets, the South Zone and East Zone, which were previously drilled by the Soviets, with drilling on the Borubai License exceeding 98,000 meters.

Readers are cautioned that the historical resource and reserve estimates relating to the TBL mine do not extend to the Borubai project. Kenadyr has not independently verified the information with respect to the TBL mine provided in this news release and it is not necessarily indicative of the mineralization on the Borubai project. Kenadyr is not aware of the resource and reserve categories, or the key assumptions, parameters and methods used to prepare the estimates on Zijin's TBL mine. The historical estimates on the TBL mine are not current mineral resources or mineral reserves as defined in National Instrument 43-101. Kenadyr considers the historical estimates on the TBL mine disclosed in this news release to be relevant to investors for the

purpose of understanding Kenadyr's current drill program and exploration strategy.

Kenadyr's Borubai project, which surrounds the TBL mine, has been the subject of extensive historic exploration including drilling (98,200 metres in 184 diamond drill holes), trenching (13,800 cumulative metres), bulldozer cuts (33,400 cumulative metres), geologic mapping at 1:25,000 and 1:50,000 scales, ridge, spur and grid soil geochemistry for multi-elements (14,200 samples), rock geochemical sampling (2,320 samples), pan concentrate sampling (790 samples), 100 metres of adits, and 184 metres of underground raises. Additionally, the entire area has been subject to airborne magnetic, radiometric and gravity surveys, as well as ground-based resistivity and induced polarization surveys. Additional high grade gold targets exist throughout the Borubai license. The entire license has been subject to extensive geochemical and geophysical surveys, with follow up trenching and drilling on only a few of the identified anomalies.

Additional information in respect of the Corporation's business and the Borubai project is available in the Corporation's Annual Information Form dated April 28, 2017, available under the Corporation's profile on SEDAR.

Kenadyr has an expert team of mine developers with considerable local and regulatory knowledge, led by Chief Executive Officer Dr. Alex Becker, who has operated successfully in the country for much of the past 20 years. The board and management team includes; R. Stuart (Tookie) Angus (Chairman), Alexander Becker (Chief Executive Officer), Bryan Slusarchuk (President), Douglas J. Kirwin (Director), Brian Lueck (Director) and Kevin Ma (Chief Financial Officer). Mark Eaton will act as an adviser to the Corporation.

Brian Lueck, P. Geo, a director of Kenadyr and a qualified person as defined by National Instrument 43-101, has reviewed and approved the technical information in this news release.

On behalf of Kenadyr Mining (Holdings) Corp.

Dr. Alexander Becker, Chief Executive Officer and Director

For more information, visit www.kenadyr.com.

Neither the TSX Venture Exchange nor its regulation services provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Cautionary Note Regarding Forward-Looking Statements

This news release contains forward-looking statements relating to the future operations of the Corporation and other statements that are not historical facts. Forward-looking statements are often identified by terms such as "will", "may", "should", "anticipate", "expects" and similar expressions. All statements other than statements of historical fact, included in this release, including, without limitation, statements regarding the future plans and objectives of the Corporation are forward-looking statements that involve risks and uncertainties. There can be no assurance that such statements will prove to be accurate and actual results and future events could differ materially from those anticipated in such statements. Important factors that could cause actual results to differ materially from the Corporation's expectations include the success for failure of the Corporation's proposed exploration activities on the Borubai Project or its resource potential relative to the TBL Mine and other risks detailed from time to time in the fillings made by the Corporation with securities regulations.

The reader is cautioned that assumptions used in the preparation of any forward-looking information may prove to be incorrect. Events or circumstances may cause actual results to differ materially from those predicted, as a result of numerous known and unknown risks, uncertainties, and other factors, many of which are beyond the control of the Corporation. The reader is cautioned not to place undue reliance on any forward-looking information. Such information, although considered reasonable by management at the time of preparation, may prove to be incorrect and actual results may differ materially from those anticipated. Forward-looking statements contained in this news release are expressly qualified by this cautionary statement. The forward-looking statements contained in this news release are made as of the date of this news release and the Corporation will update or revise publicly any of the included forward-looking statements as expressly required by Canadian securities law.

Appendix: Assay intervals for drill holes SZ-1-17 and EZ-1-17

Hole SZ-1-17 (Significant Intervals)

	No.		to	length	weight		Rock
	Sample					ppm	code
366	1736	to	639.0	1.0	3.130	2.418	BER
367	1737	639.0	640.0	1.0	3.670	10.575	BER
368	1738	640.0	641.0	1.0	4.100	28.643	BER

369 1739	641.0	642.0	1.0	3.010	4.759	BER
370 1740	642.0	642.0	Blank	3.060	0.057	
371 1741	642.0	643.0	1.0	3.270	12.777	BER
372 1742	643.0	644.0	1.0	3.520	3.716	BER
373 1743	644.0	645.0	1.0	3.150	0.951	BER
374 1744	645.0	646.0	1.0	3.630	0.584	BER
375 1745	646.0	647.0	1.0	3.480	1.984	BER
376 1746	647.0	648.0	1.0	3.570	4.725	BER
377 1747	648.0	649.0	1.0	3.150	0.57	BER
378 1748	649.0	650.0	1.0	3.750	0.66	BER
379 1749	650.0	651.0	1.0	4.150	9.21	BER
380 1750	651.0	652.0	1.0	3.800	6.61	BER
381 1751	652.0	653.0	1.0	3.900	28.75	BER
382 1752	653.0	654.0	1.0	4.150	4.78	BER
383 1753	654.0	655.0	1.0	4.000	0.44	BER
384 1754	655.0	656.0	1.0	3.250	0.90	BER
385 1755	656.0	657.0	1.0	4.150	6.69	Q-TUR
386 1756	657.0	658.0	1.0	3.800	2.59	Q-TUR
387 1757	658.0	659.0	1.0	4.100	1.63	Q-TUR
388 1758	659.0	660.0	1.0	4.100	3.55	Q-TUR
389 1759	660.0	661.0	1.0	3.800	1.75	Q-TUR
390 1760	661.0	662.0	1.0	3.900	3.60	Q-TUR
391 1761	662.0	663.0	1.0	3.150	0.38	Q-TUR
392 1762	663.0	664.0	1.0	3.250	4.99	Q-TUR
393 1763	664.0	665.0	1.0	3.600	4.56	Q-TUR
394 1764	665.0	666.0	1.0	3.150	3.18	Q-TUR
395 1765	666.0	667.0	1.0	4.200	7.52	Q-TUR
396 1766	667.0	668.0	1.0	4.100	12.40	Q-TUR
397 1767	668.0	669.0	1.0	3.250	2.89	Q-TUR
398 1768	669.0	670.0	1.0	4.000	10.94	Q-TUR
399 1769	670.0	671.0	1.0	3.250	9.24	Q-TUR
400 1770	671.0	672.0	1.0	4.000	4.58	Q-TUR
401 1771	672.0	673.0	1.0	3.100	20.92	Q-TUR
402 1772	673.0	674.0	1.0	3.250	5.68	Q-TUR
403 1773	674.0	675.0	1.0	3.600	3.65	Q-TUR
404 1774	675.0	676.0	1.0	4.100	0.62	Q-TUR
405 1775	676.0	677.0	1.0	4.000	7.08	Q-TUR
406 1776	677.0	678.0	1.0	3.100	5.24	Q-TUR
407 1777	678.0	679.0	1.0	2.300	0.27	Q
408 1778	679.0	680.0	1.0	3.000	0.19	Q
409 1779	680.0	681.0	1.0	2.200	0.27	LIS
410 1780				3.000	< 0.050	
411 1781		682.0		2.500	1.19	LIS
412 1782		683.0		3.000		LIS
413 1783	683.0	684.0	1.0	3.500	0.13	LIS
414 1784	684.0	685.0	1.0	3.000	0.27	LIS
415 1785	685.0	686.0	1.0	3.100	< 0.050	LIS
416 1786		687.0		2.700	< 0.050	Q
417 1787		688.0		3.400	0.87	DR
418 1788		689.0		3.500	0.06	DR
419 1789		690.0		2.500	< 0.050	
420 1790		691.0		2.200	< 0.050	
421 1791		692.0		3.100	<0.050	
422 1792		693.0		3.000	0.06	DR
423 1793		694.0		3.200	0.33	Q-TUR
424 1794		695.0		4.000	0.41	Q-TUR
425 1795		696.0		3.100	1.86	Q-TUR
426 1796	696.0	697.0	1.0	3.250	0.24	Q-TUR

427	1797	697.0	698.0	1.0	3.100	0.05	Q-TUR
428	1798	698.0	699.0	1.0	4.000	< 0.050	MG
429	1799	699.0	700.0	1.0	3.600	< 0.050	MG
430	1800	700.0	701.0	1.0	3.500	< 0.050	MG
431	1801	701.0	702.0	1.0	4.000	< 0.050	MG
432	1802	702.0	703.0	1.0	3.600	< 0.050	MG
433	1803	703.0	704.0	1.0	4.000	< 0.050	MG
434	1804	704.0	705.0	1.0	4.000	< 0.050	MG
435	1805	705.0	706.0	1.0	4.120	< 0.050	MG
436	1806	706.0	707.0	1.0	4.250	0.10	Q-SER
437	1807	707.0	708.0	1.0	3.500	2.23	Q-SER
438	1808	708.0	709.0	1.0	4.250	0.94	Q-SER
439	1809	709.0	710.0	1.0	4.200	< 0.050	Q-SER
440	1810	710.0	711.0	1.0	4.100	0.06	Q-SER
441	1811	711.0	712.0	1.0	3.780	0.06	LIS
442	1812	712.0	713.0	1.0	4.250	< 0.050	LIS
443	1813	713.0	714.0	1.0	4.000	0.70	Q-SER
444	1814	714.0	715.0	1.0	4.000	1.64	Q-TUR
445	1815	715.0	716.0	1.0	3.500	1.52	Q-TUR
446	1816	716.0	717.0	1.0	4.000	14.94	Q-TUR
447	1817	717.0	718.0	1.0	4.250	7.47	Q-TUR
448	1818	718.0	719.0	1.0	4.250	3.49	Q-TUR
449	1819	719.0	720.0	1.0	3.635		Q-TUR

Hole EZ-1-17 (significant intervals)

No.	No. Sample	from	to	length	Au, ppm	Au, ppm	Au, ppm	Rock code
1	1955		141.0	1.0	<0.050	•	•	MG
2	1956	141.0	142.0	1.0	<0.050			Q-SER
3	1957	142.0	143.0	1.0	< 0.050			LIS
4	1958	143.0	144.0	1.0	< 0.050			LIS
5	1959	144.0	145.0	1.0	< 0.050			LIS
6	1960	145.0	146.0	1.0	< 0.050			LIS
7	1961	146.0	147.0	1.0	0.061			LIS
8	1962	147.0	148.0	1.0	0.087			LIS
9	1963	148.0	149.0	1.0	0.140	0.140		BER
10	1964	149.0	150.0	1.0	0.723			BER
11	1965	150.0	151.0	1.0	0.611			BER
12	1966	151.0	152.0	1.0	18.8	18.8	14.1	BER
13	1967	152.0	153.0	1.0	10.3	10.7	9.6	Q-TUR
15	1968	153.0	154.0	1.0	7.9	6.4	7.1	Q-TUR
16	1969	154.0	155.0	1.0	7.1	6.1	6.9	Q-TUR
17	1970	155.0	156.0	1.0	3.4	2.4	2.6	Q-TUR
18	1971	156.0	157.0	1.0	2.27	2.27		Q-TUR
19	1972	157.0	158.0	1.0	4.71	4.25	4.48	Q-TUR
20	1973	158.0	159.0	1.0	3.46	3.12	2.28	Q-TUR
21	1974	159.0	160.0	1.0	2.95	1.98	2.31	Q-TUR
22	1975	160.0	161.0	1.0	5.20	4.49	4.33	Q-TUR
23	1976	161.0	162.0	1.0	13.0	20.3	19.7	Q-TUR
24	1977	162.0	163.0	1.0	9.06	7.92	7.94	Q-TUR
25	1978	163.0	164.0	1.0	2.28	3.71	3.05	Q-TUR
26	1979	164.0	165.0	1.0	4.94	6.63	6.74	Q-TUR
27	1980	165.0	166.0	1.0	7.60	8.84	11.13	Q-TUR
28	1981	166.0	167.0	1.0	17.1	17.8	14.2	Q-TUR
29	1982	167.0	168.0	1.0	23.7	24.5	23.8	Q-TUR
30	1983		169.0		34.5	39.1	39.1	Q-TUR
31	1984	169.0	170.0	1.0	17.5	14.6	14.5	Q-TUR
32	1985	170.0	171.0	1.0	4.66	3.93	3.54	Q-TUR

33	1986	171.0 172.0 1.0	4.53	4.41		Q-TUR
34	1987	172.0 173.0 1.0	12.0	11.7	10.9	Q-TUR
35	1988	173.0 174.0 1.0	4.46	4.05	4.05	Q-TUR
36	1989	174.0 175.0 1.0	3.07	3.51	3.50	Q-TUR
37	1990	175.0 176.0 1.0	16.6	17.5	16.4	Q-TUR
38	1991	176.0 177.0 1.0	15.2	16.9	15.4	Q-TUR
39	1992	177.0 178.0 1.0	7.50	7.73	6.81	Q-TUR
40	1993	178.0 179.0 1.0	19.0	17.1	16.7	Q-TUR
41	1994	179.0 180.0 1.0	5.37	4.95	4.76	Q-TUR
42	1995	180.0 180.0 BLAN	K <0.050	blank		
43	1996	180.0 181.0 1.0	5.15	4.62	6.32	Q-TUR
44	1997	181.0 182.0 1.0	3.78	3.76	4.94	Q-TUR
45	1998	182.0 183.0 1.0	2.00	2.26	2.21	Q-TUR
46	1999	183.0 184.0 1.0	10.0	9.16	9.71	Q-TUR
47	2000	184.0 185.0 1.0	16.3	15.2	16.9	Q-TUR
48	2001	185.0 186.0 1.0	5.25	5.49		Q-TUR
49	2002	186.0 187.0 1.0	6.78	7.49		Q-TUR
50	2003	187.0 188.0 1.0	3.51			Q-TUR
51	2004	188.0 189.0 1.0	6.47	6.99	6.17	Q-TUR
52	2005	189.0 190.0 1.0	22.6	23.2	23.7	Q-TUR
53	2006	190.0 191.0 1.0	6.16	5.94		Q-TUR
54	2007	191.0 192.0 1.0	2.52	2.51	2.82	Q-TUR
55	2008	192.0 193.0 1.0	2.22	2.16	2.02	Q-TUR
56	2009	193.0 194.0 1.0	1.71			Q-TUR
57	2010	194.0 195.0 1.0	1.44			Q-TUR
58	2011	195.0 196.0 1.0	2.83	2.55	2.49	Q-TUR
59	2012	196.0 197.0 1.0	1.05			Q-TUR
60	2013	197.0 198.0 1.0	2.07	1.97	2.14	Q-TUR
61	2014	198.0 199.0 1.0	4.40	4.27	3.96	Q-TUR
62	2015	199.0 200.0 1.0	10.3	12.8	9.74	Q-TUR
63	2016	200.0 201.0 1.0	1.34			Q-TUR
64	2017	201.0 202.0 1.0	1.08			Q-TUR
65	2018	202.0 203.0 1.0	0.625			Q-TUR
66	2019	203.0 204.0 1.0	0.506			Q-TUR
67	2020	204.0 205.0 1.0	0.469			BER
68	2021	205.0 206.0 1.0	0.298			BER
69	2022	206.0 207.0 1.0	0.388			BER
70	2023	207.0 208.0 1.0	0.323	0.333		Q-TUR
71	2024	208.0 209.0 1.0	0.364	0.000		Q-TUR
72	2025	209.0 210.0 1.0	0.616			Q-TUR
73	2026	210.0 211.0 1.0	0.073			AMF
74	2027	211.0 212.0 1.0		<0.050	hlank	
75	2028	212.0 213.0 1.0	5.85	5.59	5.86	BER
76	2029	213.0 214.0 1.0	2.67	2.51	2.53	BER
77	2030	214.0 215.0 1.0	0.603			BER
78	2031	215.0 216.0 1.0	0.646			BER
. 5	_00.		5.5 T O			

Please note that the three "Au, ppm" columns show the initial assay values in the first column from the left, and check or repeat assays of the same sample in the second and third columns.

To view the appendix associated with this release, please visit the following link: http://media3.marketwire.com/docs/ken0619appendix.pdf.

Contact

Kenadyr Mining (Holdings) Corp. Kevin Ma CFO (604) 687-7130 info@kenadyr.com www.kenadyr.com