Colline Sud Discovery Highlights:

- Discovery situated 2.5 kilometers from the current processing plant
- Close-to-surface oxide mineralization suggests potential to extend the existing heap leach operation as a satellite deposit
- Additional drilling campaign to test extensions is expected to begin in November
- Maiden Colline Sud resource estimate expected in Q4-2016

ABIDJAN, Cote d'Ivoire, Oct. 13, 2016 (GLOBE NEWSWIRE) -- Endeavour Mining Corporation (TSX:EDV)(OTCQX:EDVMF) is pleased to announce a new discovery at its Ity gold mine in Côte d'Ivoire, called Colline Sud, situated 2.5 kilometers from the current processing plant.

The oxide mineralization encountered at Colline Sud could serve as a satellite deposit to potentially extend the current heap leach operation.

The Colline Sud mineralization occurs at or very near the surface and in two distinct areas referred to as the South East and North West sectors, with respective strike lengths of 500 meters and 350 meters. The mineralization in both sectors remains open at depth and in the North West sector also along strike.

Similar to other targets identified on the Ity property, Colline Sud is a historical gold in soil anomaly. A short shallow drilling campaign was first conducted to confirm mineralization which was then followed-up with the recently completed 116-hole reverse-circulation ("RC") and diamond-drilling ("DD") program totalling 11,955 meters.

Patrick Bouisset, Executive Vice-President Exploration and Growth of Endeavour, commented: "This new discovery - the second announced at Ity since September - along with the other targets outlined by historic geochemistry and our recent auger drilling program, demonstrates the prolific geological context of this district.

Though smaller than the recently announced Bakatouo discovery, we believe Colline Sud provides the potential to extend the current heap leach operation. As we increase our exploration activity, we are excited to pursue and expand our ongoing exploration program to other identified targets."

Some of the selected best intercepts include (estimated true widths):

- S1909: 6.7m @ 10.02 g/t Au including 1.0m @ 29.87 g/t Au
- CS15-008: 13.1m @ 12.34 g/t Au including 1.1m @ 33.65 g/t and 0.5m @ 102.36 g/t Au
- CS15-008: 4.4m @ 33.31 g/t Au including 1.1m @ 93.14 g/t Au CS15-020: 8.5m @ 3.05 g/t Au
- CS15-020: 13.9m @ 2.83 g/t Au
- CS15-027: 7.7m @ 5.76 g/t Au including 0.8m @ 48.78 g/t Au
- CS15-033: 5.0m @ 24.77 g/t Au including 1.1m @ 61.07 g/t Au
- CS16-076: 6.7m @ 6.08 g/t Au including 1.4m @ 25.03 g/t Au
- CS16-085: 18.4m @ 15.89 g/t Au including 1.0m @ @69.44g/t Au and 1.0m @ 85.37 g/t Au
- CS16-097: 15.5m @ 4.61 g/t including Au 1.0m @ 40.60 g/t Au
- CS16-097: 18.4m @ 4.45 g/t including Au 1.0m @ 27.07 g/t Au

The Colline Sud mineralization is mainly hosted by surficial oxidized clays. In the South East sector it is oriented at N45 azimuth along strike and dipping on average at 55 degrees to the NW. It sits above some enhanced dissolution areas located at the contact between marbles and volcanosediments. Mineralization is also hosted in volcanosediment and skarnoide marble at depth. The contact between carbonate and volcanosediments could represent a possible shearing zone, which may have favoured posterior circulation of fluids linked with neighbouring intrusives. Skarns facies are also present, although less developed than in Mount Ity or in the recently announced Bakatouo discovery. Ore bodies in Colline Sud are also thinner and less developed than at Bakatouo.

Next Steps

A maiden resource is expected to be published during the fourth quarter of 2016 for both Colline Sud and the previously announced Bakatouo discovery.

Endeavour intends to resume exploration in and around the Ity mine after the end of the rainy season in November, with up to six drill rigs expected to be operational. A follow-up 3,700 meter RC and DD drilling program is planned on Colline Sud to test the extensions and conduct infill drilling. In addition, an 8,000 meter DD drilling campaign is also planned on Bakatouo. Other nearby targets are also being explored, as shown in Figure 1 of the appendix.

The CIL Feasibility Study for the Ity mine is on-track for completion in the fourth quarter of 2016.

Qualified Person

The scientific and technical content of this news release has been reviewed, verified and compiled by Gérard de Hert, EurGeol, Senior VP West Africa Exploration for Endeavour Mining. Gérard de Hert has more than 19 years of mineral exploration and mining experience, and is a "Qualified Person" as defined by National Instrument 43-101 - Standards of Disclosure for Mineral Projects ("NI 43-101").

Assays and Quality Assurance/Quality Control

The Colline Sud drilling results presented in this new release have been prepared in accordance with National Instrument 43-101 Standards of Disclosure for Mineral Projects. Drill core (HQ and NQ) and RC samples were crushed and pulverized on site at the exploration mechanical preparation facility. The pulverized samples (pulps) were analyzed using a standard 50-gram gold fire assay with an Atomic Absorption finish at Bureau Veritas Laboratories in Abidjan (independent lab). Sampling and assay data were monitored through a quality assurance/quality control program designed to follow NI 43-101 and industry best practice.

About Endeavour Mining Corporation

Endeavour Mining is a TSX-listed intermediate gold producer, focused on developing a portfolio of high quality mines in the prolific West-African region, where it has established a solid operational and construction track record.

Endeavour is ideally positioned as the major pure West-African multi-operation gold mining company, operating 5 mines in Côte d'Ivoire (Agbaou and Ity), Burkina Faso (Karma), Mali (Tabakoto), and Ghana (Nzema). In 2016, it expects to produce between 575koz and 610koz at an AISC of US\$870 to US\$920/oz. Endeavour is currently building its Houndé project in Burkina Faso, which is expected to commence production in Q4-2017 and to become its flagship low-cost mine with an average annual production of 190koz at an AISC of US\$709/oz over an initial 10-year mine life based on reserves. The development of the Houndé project is expected to lift Endeavour's group production +900kozpa and decrease its average AISC to circa \$800/oz by 2018, while exploration aims to extend all mine lives to +10 years.

Contact Information

Martino De Ciccio

DFH Public Affairs in Toronto

VP - Strategy & Investor Relations +33 (0)1 70 38 36 95 mdeciccio@endeavourmining.com

John Vincic (416) 206-0118 x.224 jvincic@dfhpublicaffairs.com

Brunswick Group LLP in London

Carole Cable, Partner +44 7974 982 458 ccable@brunswickgroup.com

Corporate Office: 5 Young St, Kensington, London W8 5EH, UK

This news release contains "forward-looking statements" including but not limited to, statements with respect to Endeavour's plans and operating performance, the estimation of mineral reserves and resources, the timing and amount of estimated future production, costs of future production, future capital expenditures, and the success of exploration activities. Generally, these forward-looking statements can be identified by the use of forward-looking terminology such as "expects", "expected", "budgeted", "forecasts", and "anticipates". Forward-looking statements, while based on management's best estimates and assumptions, are subject to risks and uncertainties that may cause actual results to be materially different from those expressed or implied by such forward-looking statements. Accordingly, readers should not place undue reliance on forward-looking statements. Please refer to Endeavour's most recent Annual Information Form filed under its profile at www.sedar.com for further information respecting the risks affecting Endeavour and its business.

Appendix A: Plan maps and Cross-Section

Figure 1: Ity Mine Exploration Drilling Targets

Appendix B: Drill Results - Selected Drill Holes

Hole ID	Туре	Easting	Northing	Final Depth	From	То	Estimated True Length	Au Grade
		(UTM 29N)	(UTM 29N)	(m)	(m)	(m)	(m)	(g/t)
S1909	DDH	597758	758109	141.1	2.0	6.8	4.6	0.71
				and	13.6	20.5	6.7	10.02
				including	15.2	16.0	0.8	22.19
				including	17.5	18.5	1.0	29.87
				including	18.5	19.0	0.5	35.10
S1914	DDH	597817	757854	174.5	22.0	26.0	3.9	0.79
				and	59.5	63.3	3.7	2.24
				and	87.0	90.3	3.1	2.65
				and	121.0	124.5	3.3	1.96
				and	139.3	142.5	3.1	0.64
				and	147.1	151.9	4.7	1.54
				and	161.4	173.2	11.4	1.13
CS15-008	DDH	597920	757857	70.8	7.8	21.4	13.1	12.34
				including	8.6	9.7	1.1	33.65
				including	9.7	10.2	0.5	102.36
				including	14.0	15.0	1.0	11.53
				including	15.0	16.2	1.1	29.73
				and	26.9	31.5	4.4	33.31
				including	28.7	29.8	1.1	93.14
				including	29.8	30.6	0.7	44.74
CS15-020	DDH	597841	757794	146.7	17.0	21.0	3.9	2.18
				and	25.2	34.0	8.5	3.05
				and	47.0	54.0	6.8	2.80
				and	72.5	74.8	2.2	3.81
				and	82.7	97.0	13.9	2.83
CS15-027	DDH	597898	757877	107.9	16.6	21.0	4.3	3.24
				and	61.0	69.0	7.7	5.76
				including	66.5	67.3	0.8	48.78
CS15-033	DDH	597847	757827	70.2	3.0	7.2	4.1	1.20
				and	43.0	47.3	4.2	1.27
				and	48.5	53.6	5.0	24.77
				including	49.2	50.3	1.1	61.07
				including	50.8	52.0	1.2	35.55
				including	52.0	52.9	0.8	14.41
CS15-037	DDH	597880	757794	114.0	5.5	16.1	10.2	1.96
				and	18.1	20.6	2.4	1.44
				and	22.1	25.1	2.9	1.21
				and	30.0	38.0	7.7	2.60
				and	40.0	47.0	6.8	0.65
				and	51.9	56.0	4.0	0.72
				and	96.9	102.9	5.8	2.69
				including	99.9	100.9	1.0	11.15
				and	103.9	106.9	2.9	2.39
CS15-038	DDH	597925	757746	60.0	3.0	8.2	5.0	0.99
CS15-041	DDH	597877	757850	137.7	33.9	36.5	2.5	60.94
				including	33.9	34.7	8.0	51.08
				including	34.7	35.6	0.9	126.38

			and	38.4	42.9	4.3	4.35
			including	38.4	39.0	0.6	13.19
			including	39.0	39.8	0.7	13.05
			and	44.0	46.7	2.6	2.72
			and	48.0	58.2	9.8	5.07
			including	48.9	49.6	0.7	16.04
			including	49.6	51.0	1.4	21.83
			including	56.0	57.0	1.0	11.79
			and	65.0	80.0	14.5	1.55
CS16-071 DDH	l 597794	757874	90.3	5.7	7.8	2.0	0.57
CS16-072 DDH	I 597703	757652	114.6	32.4	37.0	4.4	1.18
			and	65.6	69.7	4.0	11.39
			including	69.0	69.7	0.7	63.39
			and	72.0	75.2	3.1	1.33
			and	88.4	93.0	4.5	1.16
CS16-076 DDH	l 597749	757999	104.7	6.1	13.0	6.7	6.08
			including	8.9	10.3	1.4	25.03
			and	19.1	21.6	2.4	0.81
CS16-085 RC	597725	757665	79.0	26.0	35.0	8.7	2.60
			including	27.0	28.0	1.0	15.06
			and	60.0	79.0	18.4	15.89
			including	69.0	70.0	1.0	69.44
			including	72.0	73.0	1.0	12.19
			including	73.0	74.0	1.0	20.57
			including	74.0	75.0	1.0	85.37
			including	75.0	76.0	1.0	14.84
			including	77.0	78.0	1.0	32.91
			including	78.0	79.0	1.0	39.18
CS16-089 RC	597778	757679	80.0	33.0	46.0	12.6	2.57
			including	44.0	45.0	1.0	11.26
			and	68.0	72.0	3.9	0.79
CS16-092 RC	597820	757709	89.0	5.0	10.0	4.8	0.61
			and	14.0	18.0	3.9	1.29
			and	28.0	34.0	5.8	3.13
CS16-097 RC	597867	757769	80.0	6.0	22.0	15.5	4.61
			including	13.0	14.0	1.0	10.31
			including	16.0	17.0	1.0	40.60
			and	34.0	41.0	6.8	1.47
			and	48.0	67.0	18.4	4.45
			including	56.0	57.0	1.0	27.07
			including	57.0	58.0	1.0	18.38
			including	64.0	65.0	1.0	10.41
CS16-098 RC	597901	757767	60.0	2.0	5.0	2.9	0.54
			and	8.0	12.0	3.9	0.89
			and	24.0	30.0	5.8	0.56

Cut-off grades are 0.5g/t Au; only intervals greater than 2.0m estimated true width are reported. Uncapped assays were used. All holes were drilled with Azimuth of 135° and Dip of -50° .

Click here to view the complete drill results.

View News Release in PDF Format http://hugin.info/171882/R/2048822/766088.pdf Colline Sud Drill Results http://hugin.info/171882/R/2048822/766089.pdf Exploration Drilling Targets http://hugin.info/171882/R/2048822/766091.jpg Drilling Area http://hugin.info/171882/R/2048822/766093.jpg Cross-Section http://hugin.info/171882/R/2048822/766096.jpg